MINISTERIO DE FOMENTO

COMISIÓN VENEZOLANA
DE NORMAS INDUSTRIALES

NORMA VENEZOLANA
METODO DE ENSAYO PARA
DETERMINAR LA SOLUBILIDAD
DE LA LANA EN UREA-BISULFITO
<table>
<thead>
<tr>
<th>CAPITULO</th>
<th>TITULO</th>
<th>PAGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALCANCE</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>NORMAS COVENIN A CONSULTAR</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>RESUMEN DEL METODO</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>EQUIPO DE ENSAYO</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>MATERIAL A ENSAYAR</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>PROCEDIMIENTO</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>EXPRESION DE LOS RESULTADOS</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>INFORME</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>RELACION CON OTRAS NORMAS</td>
<td>6</td>
</tr>
</tbody>
</table>
TRAMITE:

COMITE: CT-1 TEXTIL

PRESIDENTE: Luis Andrés Colmenares

SECRETARIO: Perla Puterman S.

SUB-COMITE: CT-1/SC-1 FIBRAS E HILADOS

COORDINADOR: Perla Puterman S.

PARTICIPANTES

<table>
<thead>
<tr>
<th>ENTIDAD O EMPRESA</th>
<th>COMITE</th>
<th>REPRESENTANTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fondo de Desarrollo Algodonero</td>
<td></td>
<td>Luis Andrés Colmenares</td>
</tr>
<tr>
<td>Asociación Textil Venezolana</td>
<td></td>
<td>Daniel Ragot</td>
</tr>
<tr>
<td>Diagoven</td>
<td></td>
<td>Carlos Granado</td>
</tr>
<tr>
<td>Productores de Fibras Artificiales y Sintéticas</td>
<td></td>
<td>Luis Brener</td>
</tr>
<tr>
<td>Industria Textil Algodonera</td>
<td></td>
<td>Alfredo Blohm</td>
</tr>
<tr>
<td>Esteban Zarikian</td>
<td></td>
<td>Edwin Ross</td>
</tr>
<tr>
<td>Industria Textil de Tejido Sintético</td>
<td></td>
<td>Ben S. Goldberg</td>
</tr>
<tr>
<td>Industria de Lana</td>
<td></td>
<td>Rafael García Plana</td>
</tr>
<tr>
<td>Ministerio de Hacienda (Laboratorio)</td>
<td></td>
<td>Manuel Cifre</td>
</tr>
<tr>
<td>Cámara Venezolana de la Industria del Vestido</td>
<td></td>
<td>Ramón Vargas</td>
</tr>
<tr>
<td>Instituto Venezolano de Protección al Consumidor</td>
<td></td>
<td>Enrique Abbo</td>
</tr>
<tr>
<td>Corporación Venezolana de Fomento</td>
<td></td>
<td>Paúl Vizcaya</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roger Chovet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Florida de Mc'Gill</td>
</tr>
</tbody>
</table>
ENTIDAD O EMPRESA

Ministerio de Fomento
División de Industrias Tradicionales

Ministerio de la Defensa

Cámara de Comercio de Caracas

SUB-COMITÉ

ENTIDAD O EMPRESA

Asociación Textil Venezolana

Ministerio de Hacienda (laboratorio)

Ministerio de Fomento

 Corporación Venezolana de Fomento

Fondo de Desarrollo Algodonero

Sudamtex

REPRESENTANTES

Dinorah de Zamora

Pedro Luis Sánchez

Sam Pariente

REPRESENTANTES

Saúl Trejo

Hernando Rosas

Gualberto Rojas

Francisco Rodríguez

Dinorah de Zamora

Floria de Mc'Gill

Roger Chovet

José A. Martínez

Oscar García

Jesus Chacón

DISCUSION PUBLICA: Fecha de Envío:

Duración:

FECHA DE APROBACION POR COVENIN:
NORMA VENEZOLANA

TEXTIL

METODO DE ENSAYO PARA DETERMINAR LA SOLUBILIDAD DE LA LANA EN UREA BISULFITO

COVENIN 1172-77

1.- ALCANCE

Esta Norma contempla el método de ensayo para determinar la solubilidad de la lana en cualquier forma excepto lana sucia o grasienta en una solución de urea-bisulfito.

2.- NORMAS COVENIN A CONSULTAR

COVENIN 1167-77 Método de Ensayo para determinar la cantidad de ácido contenida en la lana.

COVENIN 1080-76 Método de ensayo para determinar el pH del extracto acuoso en la lana.

3.- RESUMEN DEL METODO

3.1 La lana se sumerge en una solución de urea y metabisulfito de sodio de composición especificada, en condiciones establecidas de tiempo, temperatura y relación de baño. Las pérdidas de masa se determinan por diferencia entre las masas secas de la muestra antes y después del tratamiento.

4.- EQUIPO DE ENSAYO

4.1 APARATOS

4.1.1 Termostato capaz de mantener la temperatura en 66°C ± 0,5 °C

4.1.2 Medidor pH.

4.1.3 Extractor de Soxhlet.

4.1.4 Erlenmeyer con tapón esmerilado con una capacidad útil de 100 cm³, todos de igual vidrio y espesor de pared.

4.1.5 Crisoles de placa filtrante de 30 cm³ de capacidad y porosidad. Es conveniente que estén provistos de tapones esmerilados.
En caso contrario, se debe introducir para la pesada en un pesafiltro.

4.1.6 Matraz erlenmeyer para filtración al vacío.

4.1.7 Trompa de vacío y pieza de unión entre crisol y matraz erlenmeyer para filtración al vacío.

4.1.8 Estufa con circulación de aire, capaz de mantener una temperatura de 105°C ± 2°C.

4.1.9 Pesafiltros, con tapas de cierre esmerilados.

4.1.10 Balanza analítica, con una sensibilidad de 0,1 mg.

4.1.11 Desecador

4.2 REACTIVOS

4.2.1 Los reactivos utilizados deben ser de calidad para análisis.

4.2.2 Solución de urea-bisulfito. Se disuelve 50 g de urea en agua destilada hiriendo, se añade 3 g de metabisulfito y se enfriá; se añade 2 cm³ de la solución de hidróxido de sodio 5 N y se completa el volumen a 100 cm³. Se verifica el pH de la solución utilizando el medidor de pH con electrodos de vidrio y se ajusta si es necesario a 7,0 ± 0,1. Esta solución debe ser preparada el mismo día de su utilización.

4.2.3 Solución de urea, conteniendo 25 g de urea por 100 cm³.

4.2.4 Diclorometano

5.- MATERIAL O EQUIPO A ENSAYAR

El material a ensayar consiste en una muestra de lana con un peso de 10 g.

6.- PROCEDIMIENTO

6.1 EXTRACCIÓN DE LA MUESTRA

Se realiza la extracción de la muestra durante una hora en un Soxhlet empleando diclorometano y con un mínimo de 5 ciclos. Se saca la lana,
se la escurre y se evapora el diclorometano. Se elimina a mano toda materia extraña visible. Si la muestra es hilo, o tejido, se convierte en pequeños trozos de hilo de una longitud de 1 cm aproximadamente. Se acondicionan los especímenes en atmósfera de laboratorio.

6.2 DETERMINACIÓN DE LA MASA SECA DEL ESPECÍMEN

6.2.1 Se pesa al 0,1 mg un espécimen de 1 g ± 0,1 g (M_1) que sea representativo de la muestra tratada.

6.2.2 Se seca en un pesafiltros a 105ºC ± 2ºC. Se enfriaría en un desecador, se cierra el recipiente y se pesa. Se repiten estas operaciones hasta obtener masa constante. (Se considera masa constante cuando dos pesadas realizadas sucesivamente y a 50 minutos una de la otra difieran en menos de 1 mg).

6.2.3 Se saca la lana del pesafiltros, se pesa éste y se calcula la masa seca (M'_1) del especímen.

6.3 DETERMINACIÓN DE LA SOLUBILIDAD EN UREA-BISULFITO

6.3.1 Esta operación se hace por duplicación.

6.3.2 Se introduce 100 cm3 de solución de urea-bisulfito en el erlenmeyer, al cual se cierra sin apretar el tapón a fondo. Se coloca el erlenmeyer en el termostato y se lo sostiene con un dispositivo conveniente, de modo que el nivel de agua exterior al mismo sobrepase al menos 5 cm el nivel de la solución en su interior. Esta forma de proceder es esencial para obtener un control preciso de la temperatura.

6.3.3 Cuando la temperatura de la solución de urea-bisulfito alcance 65ºC ± 0,5ºC, se introduce cuidadosamente en el erlenmeyer un espécimen de 1 g ± 0,1 g pesado al 0,1 mg (M_2). Se tapa y se agita moderadamente de manera que se obtenga el empepado del espécimen. Se agita nuevamente con moderación a los 15, 30 y 45 minutos, no sobrepasando la agitación una duración de 5 segundos. Después de 60 minutos se traslada cuidadosamente el contenido del erlenmeyer a un crisol de
placa filtrante de tara conocida y se aspira el líquido por succión. Se hace pasar toda la materia fibrosa que quede en el erlenmeyer, lavándolo con la solución de urea. Se lava el residuo que se encuentra en el crisol, tres veces con la solución de urea, unos 10 cm3 - cada vez, después seis veces con agua destilada permitiendo que en cada vez el líquido quede en contacto con el residuo durante un período de 15 segundos antes de aplicar la succión para aspirar completamente el líquido.

6.3.4 Se seca el crisol y su contenido a 105°C ± 2°C, se deja enfriar en el desecador y se pesa. Se repiten estas operaciones hasta obtener masa constante (M'_3).

6.4 DETERMINACION DE LA ACIDEZ

Si el extracto acuoso de la lana determinado según la Norma COVENIN 1080 tiene un pH inferior a 4.0 se determina la acidez de la muestra tratada según lo indicado en la Norma COVENIN 1157.

7.- EXPRESIÓN DE LOS RESULTADOS

7.1 Se calcula la masa seca (M'_2) del especímen sobre el cual se determinó la solubilidad en urea-bisulfito, con la siguiente relación:

$$M'_2 = M_2 \frac{M'_1}{M_1}$$

Donde:

M_2 masa del especímen determinada según lo indicado en el párrafo 6.3.3

M_1 Masa húmeda del especímen determinada según lo indicado en el párrafo 6.2.1

M'_1 Masa seca del espécimen determinada según lo indicado en el párrafo 6.2.3
7.2 MUESTRAS QUE NO CONTIENEN ACIDO

Se calcula la solubilidad de la lana en urea-bisulfito como la pérdida de masa del especímen expresada en porcentaje de su masa seca, mediante la siguiente fórmula:

\[S = \frac{M'_{2} - M_{3}}{M'_{2}} \times 100 \]

Donde:
- \(S \): solubilidad en urea-bisulfito, expresada en porcentaje de su masa seca.
- \(M'_{2} \): masa seca del especímen calculada como se indica en el párrafo 7.1.
- \(M_{3} \): masa seca del residuo, determinada como se indica en el párrafo 6.3.4.

7.3 MUESTRAS QUE CONTIENEN ACIDO

\[S' = \frac{(S - s) \times 100}{100 - s} \]

donde:
- \(S' \): Solubilidad en urea-bisulfito no corregida, calculada como se indica en el párrafo 7.2.
- \(s \): Porcentaje de ácido sulfúrico, determinado como se indica en el párrafo 6.4.

3.- INFORME

En el informe se deben indicar los resultados individuales de la solubilidad de la lana en urea-bisulfito y su media, expresados con 3 cifras significativas.
9. - RELACION CON OTRAS NORMAS

IWFU 11 - FEDERACION LANERA INTERNACIONAL
UNE 40205 INSTITUTO NACIONAL DE RACIONALIZACION Y NORMALIZACION DE ESPAÑA.
COPANT 83-016 COMISION PANAMERICANA DE NORMAS TECNICAS
COMISIÓN VENEZOLANA DE NORMAS INDUSTRIALES

MINISTERIO DE FOMENTO

Edif. Fundación La Salle, 5° piso, Av. Boyacá (Cota Mil)

CARACAS