MINISTERIO DE FOMENTO

COMISIÓN VENEZOLANA DE NORMAS INDUSTRIALES

NORMA VENEZOLANA

MÉTODO DE ENSAYO PARA DETERMINAR EL DIAMETRO MEDIO DE LAS FIBRAS DE CINTA DE LANA PEINADA, MEDIANTE APARATOS A FLUJO DE AIRE
<table>
<thead>
<tr>
<th>ENTIDAD O EMPRESA</th>
<th>COMITE</th>
<th>REPRESENTANTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fondo de Desarrollo Algodonero</td>
<td>Luis Andrés Colmenares</td>
<td></td>
</tr>
<tr>
<td>Amociación Textil Venezolana</td>
<td>Daniel Ragot</td>
<td></td>
</tr>
<tr>
<td>Diagoven</td>
<td>Carlos Granado</td>
<td></td>
</tr>
<tr>
<td>Productores de Fibras Artificiales y Sintéticas</td>
<td>Luis Brener</td>
<td></td>
</tr>
<tr>
<td>Industria Textil Algodonera</td>
<td>Alfredo Blohm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Esteban Zarikian</td>
<td></td>
</tr>
<tr>
<td>Industria Textil de Tejido Sintético</td>
<td>Edwin Rosés</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ben S. Goldberg</td>
<td></td>
</tr>
<tr>
<td>Industria de Lana</td>
<td>Rafael García Plana</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manuel Cifré</td>
<td></td>
</tr>
<tr>
<td>Ministerio de Hacienda (Laboratorio)</td>
<td>Ramón Vargas</td>
<td></td>
</tr>
<tr>
<td>Cámara Venezolana de la Industria del Vestido</td>
<td>Enrique Abbo</td>
<td></td>
</tr>
<tr>
<td>Instituto Venezolano de Protección al Consumidor</td>
<td>Paúl Vizcaya</td>
<td></td>
</tr>
<tr>
<td>Corporación Venezolana de Fomento</td>
<td>Roger Choveet</td>
<td></td>
</tr>
</tbody>
</table>
| | Floris de Mc'Gill
ENTIDAD O EMPRESA

Ministerio de Fomento División de Industrias Tradicionales
Ministerio de la Defensa
Cámara de Comercio de Caracas

SUB-COMITE

ENTIDAD O EMPRESA

Asociación Textil Venezolana

Ministerio de Hacienda (Laboratorio)
Ministerio de Fomento
Corporación Venezolana de Fomento
Coats de Venezuela
Fondo de Desarrollo Algodonero
Sudamtex

DISCUSIÓN PÚBLICA: Fecha de Envío:
Duración:

FECHA DE APROBACIÓN POR COVENIN:

ENTIDAD O EMPRESA

REPRESENTANTES

Dinorah de Zamora
Pedro Luis Sánchez
Sam Pariente

REPRESENTANTES

Saúl Trejo
Hernando Rosas
Guilberto Rojas
Francisco Rodríguez
Dinorah de Zamora
Floria de McGill
Roger Chovet
Virgilio Meléndez
José A. Martínez
Oscar García
Jesus Chacón

07/10/76.
45 días

12-04-77
<table>
<thead>
<tr>
<th>CAPITULO</th>
<th>TITULO</th>
<th>PAGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALCANCE</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>NORMAS COVENIN A CONSULTAR.</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>RESUMEN DEL METODO</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>EQUIPO DE ENSAYO</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>MATERIAL A ENSAYAR</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>PROCEDIMIENTO</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>EXPRESION DE LOS RESULTADOS</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>ERROR DEL METODO</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>INFORME</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>RELACION CON OTRAS NORMAS.</td>
<td>11</td>
</tr>
</tbody>
</table>
NORMA VENEZOLANA
TEXTIL
METODO DE ENSAYO PARA DETERMINAR
EL DIAMETRO MEDIO DE LAS FIBRAS-
DE CINTA DE LANA PEINADA MEDIAN-
TE APARATOS A FLUJO DE AIRE.

1. ALCANCE

1.1 Esta norma contempla el método para determinar el diámetro me-
dio de las fibras de Cintas de Lana Peinada mediante aparatos a flu-
jo de aire.

1.2 Este método se aplica solamente a fibras de lana no meduladas —
en forma de cintas peinadas.

2. NORMAS COVENIN A CONSULTAR

COVENIN 38-76 Atlóstatas Normales para Acondicionar y Determinar —
las propiedades físicas y mecánicas de los materiales textiles.

3. RESUMEN DEL METODO

Una masa especificada de fibras a ensayar se comprime hasta volu-
men constante, en una cámara cilíndrica de fondos perforados conec-
tada a un rotámetro y a un manómetro. Se hace pasar luego una co-
rriente de aire a través de las fibras. El diámetro medio de las —
mlas se deduce de la lectura de una escala colocada en el manóme-
tro o en el rotámetro.

4. EQUIPO DE ENSAYO.

4.1 APARATOS

4.1.1 Aparato a flujo de aire.- Se describen dos versiones alterna-
tivas de este aparato llamadas respectivamente "a flujo constante"—
y "a presión constante".

El aparato a flujo constante, utiliza un espécimen de 1.5 g de pe-
so; el rotámetro se ajusta a un flujo determinado y el diámetro me-
dio de las fibras se deduce de la lectura de la escala del manóme-
tro. Esta escala no es lineal, los intervalos sucesivos correspon-
dientes a un micrómetro, decrecen con el aumento del diámetro. El aparato a presión constante, utiliza un especímen de 2,5 g; el manómetro se ajusta a una presión determinada y el diámetro medio de las fibras se deduce de la lectura del rotámetro. El aparato a presión constante proporciona una escala en micrómetros sensiblemente lineal.

4.1.1.1 Las diferentes partes de ambas versiones del aparato están dispuestas en la misma forma, según se indica en el fig. 1 y son las siguientes:

4.1.1.1.1 Una válvula (B), capaz de proporcionar un control suficientemente preciso del suministro de aire, de manera que el nivel del rotámetro o del manómetro pueda ajustarse rápidamente a los valores especificados. Se recomienda utilizar una llave de aguja.

4.1.1.1.2 Una bomba aspirante, capaz de proporcionar un caudal regulado de no menos de 30 litros/min a 200 mm de H₂O, causando solamente una débil fluctuación del flotador del rotámetro. Entre la bomba y la válvula B, puede intercalarse un filtro para retener las fibras arrastradas por el aire.

4.1.1.1.3 Una cámara a volumen constante A de bronce, acero duro o cualquier otro metal adecuado, cuyas dimensiones son las que se recomiendan en la fig. 2. La cámara consiste en las siguientes tres partes: la base en la cual son depositadas las fibras, el émbolo que comprime las fibras, y la tapa roscada que ajuste el émbolo a la base. La superficie debe ser bien lisa de manera que el émbolo se deslice fácilmente al interior de la base sin apretar las fibras contra las paredes del cilindro. La base y la tapa de rosca tienen una marca de ajuste. El émbolo debe tener una platina de sujeción.

4.1.1.1.4 Un manómetro con recipiente D, cuyo líquido se especifica en la Tabla I, montado a una altura suficiente para dar lugar a un desnivel ZH de 350 mm en la columna del mismo. El tubo de vidrio debe tener un diámetro interior mínimo de 5 mm.

Con el fin de obtener un menisco más visible se colorea el líquido
del manómetro siendo conveniente usar colorantes estables para el caso de alcohol y pequeñas trazas de ácido crómico para agua destilada. Una escala milimétrica está fijada detrás de la columna ZH —según se describe en el parágrafo A.1.3.2.

4.1.1.1.5 Un rotámetro con las características especificadas en la Tabla I.

TABLA I

<table>
<thead>
<tr>
<th>Características</th>
<th>Flujo constante</th>
<th>Presión constante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro mínimo del depósito</td>
<td>150 mm</td>
<td>60 mm</td>
</tr>
<tr>
<td>Fluído del manómetro</td>
<td>alcohol propílico normal</td>
<td>agua destilada</td>
</tr>
<tr>
<td></td>
<td>10 - 20 l/min</td>
<td>5 - 25 l/min</td>
</tr>
</tbody>
</table>

4.1.1.1.6 Un tubo de goma que conecte el depósito del manómetro D a la cámara A, resistente a la presión y de pequeño diámetro interior a fin de evitar un estrangulamiento debido a la flexión. Un tubo de goma o plástico que conecte la cámara A al rotámetro F, de diámetro interior no menor de 5 mm, tan corto como sea posible y que se evitará de torcer o plegar durante la calibración del aparato y su uso subsiguiente.

4.1.2 Balanza. Una balanza capaz de pesar el especímen de ensayo —al miligramo.

4.1.3 Cilindro de empaquetado(Fig. 3) construido de un material no metálico ej. polietileno, para evitar desgastes en la Cámara de volumen constante.

4.1.4 Cardas de mano. Se recomienda que sean de las dimensiones indicadas en la fig. 4

5. MATERIAL A ENSAYAR

El material a ensayar consiste en una muestra de lana de un peso de
20 g como mínimo.

6. **PROCEDIMIENTO**

6.1 **DESENGRASADO.**
Si se sabe que la muestra de laboratorio tiene un contenido de materias grasas solubles en diclorometano inferior al 1,3% el especímen puede tomarse directamente de la muestra. En caso contrario debe ser previamente desengrasada antes del acondicionamiento mediante un buen lavado en dos baños, cada uno de aproximadamente 200 cm³ de un solvente orgánico adecuado (Ester de petróleo, tetracloruro de carbono, percloroetileno, diclorometano, etc.). Si se sabe que la muestra de laboratorio ha sido pegada al aceite y contiene entre 4% y 5% de materias solubles en diclorometano, el especímen puede tomarse directamente de la muestra y se aplica la corrección indicada en el parágrafo A.4.3.

6.2 **ACONDICIONAMIENTO DE LA MUESTRA Y ATMOSFERA DE ENSAYOS.**

6.2.1 Se seca la muestra de laboratorio a 50ºC en estufa durante 30 minutos si tiene circulación forzada de aire o 2 horas si no tiene circulación. Se acondiciona la muestra de laboratorio y se efectúan los ensayos en la atmósfera normal de ensayo de acuerdo a la Norma COVENIN 33.

6.2.2 Si los ensayos no son efectuados en la atmósfera normal, se acondiciona la muestra de laboratorio cerca del aparato y se anota la humedad relativa y la temperatura ambiente al momento de la medición. Se corrige el resultado final como se indica en el parágrafo A.2.

Notas: Es importante que la humedad relativa y la temperatura ambiente varíen lo menos posible durante el acondicionamiento y el ensayo.

6.3 **OBTENCION DE LOS ESPECIMENES**

6.3.1 Se debe tomar los especímenes de diferentes lugares de la
muestras de laboratorio. En caso de Topo, se deberá extraer la muestra de laboratorio del centro y del exterior de la bobina.

6.3.2 Se pesa como mínimo dos especímenes para el método 1 y tres especímenes para el método 2.

6.3.3 Cada especímen debe pesar 1,5 g + 2 mg cuando se usa un aparato a flujo constante y 2,5 g + 4 mg cuando se usa el aparato a presión constante.

6.4 PREPARACION DEL APARATO.

6.4.1 El instrumento debe calibrarse como se describe en el parágrafo A.1. Debe estar nivelado y el flotador del medidor de flujo y el manómetro deben estar en cero.

6.4.2 Los canales de flujo del aparato a flujo de aire deben estar libres de restos de fibras de lana y de tierra ya que los residuos de éstas pueden afectar la lectura del medidor.

6.5 METODOS DE MEDIDA.

6.5.1 Se describen dos métodos alternativos que difieren en la preparación del especímen. Los dos métodos son aplicables a las dos versiones de aparatos.

6.5.2 Método 1 Utilizando cardas de mano

6.5.2.1 Preparación de los especímenes

6.5.2.1.1 Se corta una longitud de cinta que pese unos 3 g. Se coloca la cinta en la carda de mano y se la trabaja con un movimiento circular suave de modo que la cinta quede abierta y las fibras no paralelas. Se retira mediante una pinza, todas las partículas de materia vegetal presentes. Luego se ajusta el peso del especímen (ver parágrafo 6.3.3). Antes de usar las cardas de mano se debe verificar que estén libres de toda fibra.

6.5.2.2 Procedimiento de medida

6.5.2.2.1 Se coloca uniformemente el especímen en la cámara de volu
men constante utilizando el lado corto del cilindro de empaquetado. Se inserta el émbolo de metal hasta que su platina descansen sobre el borde de la cámara de volumen constante. Se verifica que no haya fibras atrapadas entre el émbolo de metal y la cámara de volumen constante. Se enrosca el arco de retención evitando la rotación del émbolo sujetando para ello la platina que posee, hasta la coincidencia de las marcas de ajuste.

6.5.2.2.2 Si se usa el método a flujo constante, se ajusta la válvula de aire hasta que la parte superior del flotador del medidor de flujo coincida con la marca de referencia "Y" y se anota el nivel del menisco del manómetro al milímetro o al 0,1 micrómetro más próximo.

6.5.2.2.3 Si se usa el método a presión constante, se ajusta la válvula de aire hasta que el nivel del menisco del manómetro coincida con la marca de referencia "H" a 190 mm y se anota la posición del flotador del rotametro al milímetro o al 0,1 micrómetro más próximo.

6.5.2.2.4 Se saca el especímen de ensayo de la cámara a volumen constante y se lo coloca nuevamente en la posición inversa evitando que se desorden. La operación se realiza utilizando pinzas. Se inserta el émbolo y se enrosca la tapa como se describe en el párrafo 6.5.2.2.1 y se realiza una segunda lectura.

6.5.2.2.5 Se repiten estas operaciones utilizando por lo menos un especímen más obteniendo así, no menos de cuatro lecturas.

6.5.2.2.6 Se determina la presión barométrica y si corresponde se corrige de acuerdo al apéndice, parágrafo A.2.3 ó A.2.4.

6.5.3 Método 2 Sin modificar la cinta

6.5.3.1 Preparación de los especímenes.

6.5.3.1.1 Se obtiene un especímen de la cinta de masa aproximada a 1,5 g ó 2,5 g mediante dos cortes oblicuos y paralelos entre sí. Se retira cuidadosamente, mediante una pinza, todas las partículas de
materia vegetal adheridas.

6.5.3.1.2 Si el peso del espécimen es muy alto se reduce mediante un corte paralelo a los realizados anteriormente. Si el peso del espécimen es muy bajo, se corta un segundo trozo de cinta de aproximadamente igual longitud. Se saca un haz de fibras del borde de este trozo y se agrega el espécimen en forma paralela. Se procede con cualquiera de estos dos procedimientos hasta obtener el peso exacto. En todo momento se debe evitar alterar el alineamiento de las fibras.

6.5.3.2 Procedimiento de medidas

6.5.3.2.1 Se coloca uniformemente el espécimen en la cámara de volumen constante utilizando el lado corto del cilindro de empaquetado de manera que la cinta siga una serie de formas de S a medida que entre en la cámara. Se inserta el émbolo de metal hasta que su platina descansen sobre el borde de la cámara de volumen constante. Se enrosca el arco de retención, evitando la rotación del émbolo sujetando para ello la platina que posee.

6.5.3.2.2 Si se usa el método de flujo constante se ajusta la válvula de aire hasta que la parte superior del flotador del medidor de flujo coincida con la marca de referencia "Y" y se anota el nivel del menisco del manómetro al milímetro o al 0,1 micrómetro más próximo.

6.5.3.2.3 Si se usa el método a presión constante, se ajusta la válvula de aire hasta que el nivel del menisco del manómetro coincida con la marca de referencia "H" a 190 mm y se anota la posición del flotador del rotametro al milímetro o al 0,1 micrómetro más próximo.

6.5.3.2.4 Se saca el espécimen de ensayo y se coloca nuevamente en la cámara en la posición inversa, evitando que se desorden. La operación se realiza utilizando pinzas. Se inserta el émbolo y se enrosca la tapa como se describe en el párrafo 6.5.3.2.1 y se realiza una segunda lectura.
Se repiten estas operaciones hasta obtener un total de 4 lecturas por especímen.

6.5.3.2.5 De igual forma se realizan 4 lecturas sobre por lo menos 2 especímenes adicionales obteniendo un total de por lo menos 12 lecturas.

6.5.3.2.6 Se determina la presión barométrica y se corrige de acuerdo al apéndice, párrafo A.2.3 y A.2.4.

Nota: Los especímenes preparados a partir de la misma muestra de laboratorio darán diferentes lecturas en el manómetro y en el medidor de flujo, usando los dos métodos anteriormente descritos. Es necesario por lo tanto que la calibración y los ensayos de muestras desconocidas se lleven a cabo usando el mismo método, de lo contrario se obtendrán resultados falsos cuando las lecturas efectuadas en el instrumento sean transformadas a micrómetros.

7. EXPRESIÓN DE LOS RESULTADOS

7.1 Se calcula el promedio de las lecturas para cada especímen de ensayo al 0,1 micrómetro.

7.2 Se realizan las correcciones necesarias.

7.3 Se calcula el gran promedio para todos los especímenes y se forma el resultado al 0,1 micrómetro.

8. ERROR DE LOS MÉTODOS

8.1 En una encuesta internacional realizada entre 19 laboratorios se midieron los diámetros medios de tres lotes de cintas. Los resultados se dan en las tablas 1 y 2.
<table>
<thead>
<tr>
<th>Diámetro medio del lote</th>
<th>Método 1</th>
<th>Método 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dentro de un laboratorio</td>
<td>Dentro de un laboratorio</td>
</tr>
<tr>
<td></td>
<td>Entre laboratorios</td>
<td>Entre laboratorios</td>
</tr>
<tr>
<td>21,5 um</td>
<td>± 0,20 um</td>
<td>± 0,57</td>
</tr>
<tr>
<td>25,5 um</td>
<td>± 0,18</td>
<td>± 0,63</td>
</tr>
<tr>
<td>29,0 um</td>
<td>± 0,24</td>
<td>± 0,70</td>
</tr>
</tbody>
</table>

Tabla 1 Límites de confianza de la media al 95%

<table>
<thead>
<tr>
<th>Diámetro medio del lote</th>
<th>Método 1</th>
<th>Método 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dentro de un laboratorio</td>
<td>Dentro de un laboratorio</td>
</tr>
<tr>
<td></td>
<td>Entre laboratorios</td>
<td>Entre laboratorios</td>
</tr>
<tr>
<td>21,5 um</td>
<td>0,28 um</td>
<td>0,91</td>
</tr>
<tr>
<td>25,5 um</td>
<td>0,25</td>
<td>0,89</td>
</tr>
<tr>
<td>29,0 um</td>
<td>0,34</td>
<td>0,99</td>
</tr>
</tbody>
</table>

Tabla 2 Diferencias máximas probables (límite de confianza 95%) entre dos medias.

8.2 VARIABILIDAD PROPIA DE LOS LOTES DURANTE EL PROCESADO.

Estrictamente hablando, la variabilidad dentro de los lotes no tiene relación con la reproducibilidad del método de ensayo. Sin embargo es necesario a veces tener en cuenta la variabilidad dentro de los lotes, cuando se comparan los resultados obtenidos por diferentes laboratorios. En efecto las muestras de laboratorio pueden haber sido extraídas en diferentes momentos de la fabricación del lote no homogéneo.

Esta variabilidad ha sido demostrada experimentalmente.
9. **INFORME**

En el informe se debe indicar.

9.1 Las lecturas individuales y el gran promedio al 0,1 micrómetro

9.2 La referencia a esta norma, al método utilizado y a la versión de aparato empleado.

9.3 Si la muestra fue desangrasada o no.

9.4 La humedad relativa y la temperatura del acondicionamiento y la atmósfera de ensayo.

9.5 Las correcciones realizadas.

9.6 Norma COVENIN utilizada.

10. RELACIÓN CON OTRAS NORMAS

COPANT. 6:3 - 009 (Comisión Panamericana de Normas Técnicas).
A.1 Calibración
A.1.1 Ensayo de estanqueidad. Luego de haber ensamblado el aparato de acuerdo a la fig. 1 se retira la tapa y el émbolo y se coloca sobre la cámara A a volumen constante, un tapón de goma. Mediante una pinza de Hoffman, se cierra el tubo de goma entre A y F, luego de haber provocado una diferencia de presión que ocasione un desplazamiento del menisco en el manómetro de aproximadamente 150 mm. Se anota la posición del menisco periódicamente durante algunos minutos. Si esta posición cambia, quiere decir el aparato presenta una pérdida que habrá que detectar.

A.1.2 Cintas de referencia para calibración. Para calibrar el aparato a flujo de aire se usa el juego de 8 cintas de referencia del IWTQ. El mismo debe solicitarse a:

IWTQ (cinta de referencia)
c/o Secretariat Interwoollabs
24 Rue Montoyer
Bruselas

En el pedido debe indicarse si el espécimen a ser usado es de 1,5 g ó 2,5 g de masa. Las cintas de referencia se suministran planadas en seco, con un contenido de materias grasas menor de 1%. Las cintas no deben ser desengrasadas, antes de ser usadas.

A.1.3 Graduación de la Escala
A.1.3.1 Condiciones de humedad relativa, temperatura y presión. Se recomienda hacer la graduación en la atmósfera normal para ensayos y a una presión atmosférica comprendida dentro de la media del lugar + 5 mm Hg.

A.1.3.2 Aparato a flujo constante. Se traza una marca horizontal y(fig 1) cerca del extremo superior de la escala del rotámetro, evitando toda posición que de lugar a una oscilación marcada del flotador. Se fi-
ja una escala graduada en milímetros detrás del manómetro y se ajusta el cero de forma que coincida con el menisco del fluido. Seguidamente se acondicionan y se pesan especímenes de 1,5 g de cada muestra de cintas de referencia y se efectúa el ensayo según el método descrito en los parágrafos 6.5.2 ó 6.5.3, anotando la distancia en milímetros del desplazamiento del menisco a partir del cero. Las cintas se usan sin desengrasar. Se miden tres especímenes de ensayo de cada una de las ocho cintas de referencia y se calcula el promedio de las nueve lecturas para cada cinta de referencia.

Sobre un diagrama se llevan los puntos de los pares de valores \(h \) en milímetros (lecturas de la desviación del menisco en el manómetro) y \(d \), diámetro conocido (en micrómetros) de la muestra; después de inspeccionar para asegurarse que los puntos se encuentren sobre una curva regular, se determina una relación entre \(h \) y \(d \), por el método de los mínimos cuadrados, como se indica más abajo. A partir de esta relación, se prepara una tabla de conversión en micrómetros, o se gradúa una escala en micrómetros y se fija del manómetro.

Siendo la relación entre \(d \) y \(h \) de la forma \(bd = \text{constante} \), es necesario tomar logaritmos para obtener una relación lineal.

Se define \(X = \log d \) y \(Y = \log h \).

Para cada uno de los \(n \) lotes que sirven a la calibración, se dispone así de dos valores \(x_i \) y \(y_i \).

Se calculan los términos siguientes:

\[
E = x_1 + x_2 + \ldots + x_n \\
Y = y_1 + y_2 + \ldots + y_n \\
Y^2 = y_1^2 + y_2^2 + \ldots + y_n^2 \\
XY = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n \\
y^2 = y^2 - \frac{(Y)^2}{n} \\
xy = xy / y^2
\]
la ecuación de regresión de X e Y que caracteriza el aparato, es entonces:

\[X = X/n + b (Y - Y/n) \]

(1)

Siendo esta relación logarítmica, es ventajoso construir una Tabla de correspondencias entre \(h \) y \(d \). Para ello, se fijan valores de \(h \) espaciados de 5 mm. Se toman los \(\log h = Y \) en una Tabla; se calculan \(X = \log d \) mediante la fórmula (1) y se deduce \(d \).

A.1.3.3 Aparato a presión constante. Se hace, sobre el manómetro, una marca horizontal a una distancia correspondiente a una presión de 189 mm de agua a partir de la marca Z de cero. Se fija una escala graduada en milímetros detrás del rotámetro \(F \), de manera que el cero de esta escala coincida con una marca de cero hecha cerca del fondo del rotámetro. Se acondicionan y se pesan especímenes de ensayo de 2,5 g - provenientes de cada muestra de cintas de referencia y se efectúa el ensayo según las indicaciones descritas en los parágrafo 6.5.2 y 6.5.3, anotando la distancia "Y" en milímetros del flotador del rotámetro a partir del cero. Las cintas se usan sin desengrasar. Se miden tres especímenes de cada una de las 6 cintas de referencia y se calcula el promedio de 9 lecturas para cada cinta de referencia.

Se llevan los pares de puntos \((d, y)\) sobre un diagrama; \(y_1, y_2, \ldots \) son los valores medios en milímetros y \(d_1, d_2, \ldots \) los valores conocidos de diámetros. Estos puntos corresponden a una relación sensiblemente lineal, la cual está dada por una curva de regresión de segundo grado, de \(y \) en función de \(d \), la que se determina por el método de los mínimos cuadrados como se indica a continuación.

\[y = a + bd + cd^2 \]

(2)

lo que se obtiene resolviendo las ecuaciones:

\[\Sigma y = a \Sigma d + b \Sigma d^2 + c \Sigma d^2 \]

\[\Sigma dy = a \Sigma d + b \Sigma d^2 + c \Sigma d^3 \]

\[\Sigma d^2 y = a \Sigma d^2 + b \Sigma d^3 + c \Sigma d^4 \]
Se utiliza la ecuación (2) para graduar en micrómetros, la escala a fijar detrás del rotámetro.

A.1.4 Calibres de control. Es recomendable utilizar 2 calibres a fin de controlar regularmente cada día el aparato y verificar que esté en buen estado de funcionamiento. Estos calibres consisten en discos de aluminio, bronce u otro material adecuado de diámetro igual al diámetro interior de la cámara a volumen constante: están perforados con un agujero central. Cada disco presenta un borde que descansa, durante el uso, sobre la parte anular superior de la cámara a volumen constante. Se recomienda un perfil similar al de los tapones descritos en el párrafo A.2.4.1. El diámetro del agujero central de un calibre se elige de forma que dé una lectura de aproximadamente 1/3 de la escala disponible sobre el manómetro (versión a flujo constante) o del rotámetro (método a presión constante). El calibre se coloca en el aparato se sujeta con la tapa roscada, y se opera normalmente, pero sin fibras en la cámara. El diámetro de la perforación central del segundo calibre se elige de forma análoga, para que corresponda a una lectura de aproximadamente 2/3 de la escala disponible.

Cuando se realiza la graduación de la escala se hacen lecturas con cada uno de los calibres. Estas lecturas se utilizan posteriormente como valores de referencia.

Una vez por día se toman lecturas con los calibres. Las variaciones en estas lecturas no deben ser superiores a 2 mm y 4 mm, respectivamente para los dos calibres. Esta forma de proceder constituye un control útil y rápido del funcionamiento del aparato, especialmente en lo que concierne a una eventual entrada de aire en el manómetro.

A.2 CORRECCIONES

A.2.1 Corrección para la humedad relativa.

A.2.1.1 Como se menciona en el párrafo 5.2 la humedad relativa normal es 65% ± 2%. Si las mediciones no se hacen dentro de esos límites, se deben corregir los resultados en micrómetros, utilizando los factores siguientes válidos para diámetros medios entre 19 y 37 micrómetros.
A.2.2 Corrección para la temperatura ambiente.

A.2.2.1 Para eliminar la influencia de la temperatura, los ensayos deben siempre realizarse a la temperatura normal de ensayo de 20 °C ± 2 °C. Si esto no fuera posible se recalibra el aparato con cintas de referencia o alternativamente se procede como se indica en el parágrafo A.2.4.

A.2.3 Corrección para la presión atmosférica

A.2.3.1 Se calibra el aparato con las cintas de referencia a 20 °C ± 2 °C y 65% ± 2% de humedad relativa, a una presión atmosférica dentro de la media del lugar ± 5 mm.

A.2.3.2 Cuando se hagan ensayos de rutina, se anota la presión barométrica si esta se desvía en más de 10 mm de la presión de calibración.

A.2.3.3 Corrección en micrómetros = \((P_e - P_c) \times 10^3 \) mm

Donde:

- \(P_c \) = Presión atmosférica de calibración, en mm de Hg
- \(P_e \) = Presión atmosférica durante el ensayo, en mm de Hg.
d = Lectura del instrumento, en micrómetros
m = Constante del aparato (1/mm Hg).

Para aparatos construidos de acuerdo a las figuras 1 y 2 se han hallado valores de m = 0,00022. Esto da correcciones de hasta 0,2 a 0,3 micrómetros para desviaciones de presión de 40 mm Hg dentro el rango de 20 a 35 micrómetros.

A.2.3.4 La constante m puede determinarse con exactitud para cualquier aparato mediante el equipo que se muestra en la figura 5. Con la válvula T puede reducirse la presión, sobre la cámara a volumen constante, en una cierta cantidad indicada por el manómetro. Las lecturas del instrumento dados por una serie de cintas se determinan para depresiones de 0; 20; 40; 80 y 100 mm Hg, utilizando los métodos descritos en el párrafo 4.7. De estos resultados se obtiene el valor de m de la ecuación de corrección.

A.2.3.5 Alternativamente, se debe recalibrar el aparato con cintas de referencia o proceder como se indica en el párrafo A.2.4.

A.2.4 Corrección combinada para temperatura y presión.

A.2.4.1 Una corrección combinada para la temperatura y la presión atmosférica puede hacerse mediante un tapón lleno de una fibra no hidroscópica, por ejemplo poliéster. Los detalles de la construcción se dan en la figura 6. El tapón de bronce u otro material adecuado, se llena con la masa correcta de fibra no hidroscópica y se cierra herméticamente. El tapón se coloca en lugar del árjolo en el aparato a flujo de aire y se toma varias lecturas a 20 °C y a una presión barométrica dentro de ± 5 mm Hg de la presión atmosférica de calibración.

Conviene realizar esta operación cuando se produce a la graduación de la escala. Sea lectura promedio C (micrómetros). Durante los ensayos subsiguientes, se toma una lectura con el tapón solo. Sea esta T (micrómetros). Luego los resultados de cualquier ensayo de fibras se multiplican por el factor: C/T. Se recomienda reemplazar la fibra del tapón después de unas cuatrocientas veces de uso.

* La masa correcta de fibra no hidroscópica, en gramos, está dada por la ecuación 3,5 P/1,31 para la versión a flujo constante y por 2,5 P/1,31 para la versión a presión constante, siendo P = densidad de la
lana se asume como 1,31. Si se usa poliéster, la masa es 1,50 para la primer versión y 2,63 para la segunda.

A. 3 TIPOS ESPECIALES DE LANA

A.3.1 Lanas meduladas. La teoría del método a flujo de aire supone que las fibras tienen una densidad constante, de lo que resulta que a una masa determinada de fibras del mismo diámetro medio corresponderá siempre un mismo valor de superficie de fibras. Las fibras fuertemente meduladas pueden tener una densidad sensiblemente más baja que el valor aceptado de 1,30 - 1,31 para las fibras de lana sólidas. Una medición a flujo de aire efectuada sobre tales fibras meduladas dará un valor menor que el diámetro medio medido en el microscopio de proyección.

Este error puede ser significativo para las lanas de cordero y puede serlo para las fibras de diámetro medio superior a 35 micrómetros aproximadamente.

A.3.2 Fibras teñidas. Se ha encontrado que en el método a flujo de aire las fibras teñidas dan valores más elevados que las mismas fibras no teñidas. Es probable que este efecto sea solamente significativo para los matices más intensos, por ejemplo los negros al cromo, donde la diferencia puede alcanzar a 0,8 micrómetros.

A.3.3 Corrección para cintas peinadas al aceite

A.3.3.1 Las siguientes correcciones se aplican cuando se ensaya cintas sin desengrasar peinadas al aceite conteniendo 4,0 - 5,0% de materia soluble en diclorometano, (calculado en base a la masa de lana seca y sin grasa) usando aparatos calibrados por medio de cintas de referencia peinadas en seco.
<table>
<thead>
<tr>
<th>Diámetro de fibra aparente</th>
<th>Corrección para cintas peinadas al aceite (micrómetros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,4</td>
<td>-</td>
</tr>
<tr>
<td>18,9</td>
<td>0,4</td>
</tr>
<tr>
<td>20,4</td>
<td>0,5</td>
</tr>
<tr>
<td>22,0</td>
<td>0,6</td>
</tr>
<tr>
<td>23,9</td>
<td>0,7</td>
</tr>
<tr>
<td>26,7</td>
<td>0,8</td>
</tr>
<tr>
<td>30,0</td>
<td>0,9</td>
</tr>
<tr>
<td>36,0</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>1,1</td>
</tr>
</tbody>
</table>
DISPOSICION GENERAL DEL APARATO

FIGURA 1
FIGURA 2
FLUJO CONSTANTE
PRESION CONSTANTE

FIGURA 3
FIGURA 4 - CARDAS DE MANO

VISTA DESDE ABAJO

LAMINA DE HIERRO

MANGO

TACO

VISTA DESDE ARRIBA

PERFIL DE LAS PUAS DE LA GUARNICION

DENSIDAD DE LAS PUAS - 10/cm²
DIÁMETRO DE LAS PUAS - 0,4 mm

PERFIL DE UN PAR DE CARDAS EN LA POSICIÓN DE TRABAJO
FIGURA 5
DISPOSITIVO PARA DETERMINAR LA CONSTANTE m DEL APARATO

FIGURA 6
DIMENSIONES DEL TAPÓN DE CORRECCIÓN

NOTA: DEBAJO DEL BORDE DEL TAPÓN SE COLOCA UN ANILLO DELGADO DE CAUCHO O PLÁSTICO PARA QUE NO HAYA PERDIDAS CUANDO SE COLOQUE EN LA CAMARA A VOLUMEN CONSTANTE.
COMISIÓN VENEZOLANA DE NORMAS INDUSTRIALES
MINISTERIO DE FOMENTO
Edif. Fundación La Salle, 5º piso, Av. Boyacá (Cota Mil)
CARACAS