NORMA VENEZOLANA

AUTOMOTRIZ, SILENCIADORES Y RESONADORES

2da Revisión

FAVENPA
Cámara de Fabricantes Venezolanos de Productos Automotores
PRÓLOGO

La Comisión Venezolana de Normas Industriales (COVENIN), creada en 1958, es el organismo encargado de programar y coordinar las actividades de Normalización y Calidad en el país. Para llevar a cabo el trabajo de elaboración de normas, la COVENIN constituye Comités y Comisiones Técnicas de Normalización, donde participan organizaciones gubernamentales y no-gubernamentales relacionadas con un área específica.

La presente norma sustituye totalmente a la Norma Venezolana COVENIN 1434-81, fue elaborada bajo los lineamientos del Comité Técnico de Normalización CT5 por el Subcomité Técnico SC1 Motor y sus componentes a través del convenio de cooperación suscrito entre FAVENPA y FONDONORMA, siendo aprobada por la COVENIN en su reunión N° 143 de fecha 04/12/96, con carácter de obligatorio cumplimiento para los puntos 5.3 “Fuga” y 5.5 “Nivel de Ruido”.

NORMA VENEZOLANA
AUTOMOTRIZ. SILENCIADORES
Y RESONADORES

1 OBJETO

Esta Norma Venezolana COVENIN establece los requisitos mínimos y métodos de ensayo que deben cumplir los silenciadores y resonadores usados en vehículos automotores destinados al transporte de personas, de carga y de mercancías.

2 REFERENCIAS NORMATIVAS

Las siguientes normas contienen disposiciones que citadas en el texto constituyen requisitos de esta Norma Venezolana COVENIN. Las ediciones indicadas están en vigencia en el momento de esta publicación y como toda norma esta sujeta a revisión, se recomienda a quienes realicen acuerdos en base a ellas, analicen la conveniencia de utilizar las ediciones más recientes de las normas citadas a continuación.

COVENIN 1433-81 Determinación del ruido emitido por vehículos de motor.

Otras Normas

SAE J1207 FEB87 Determinación de la efectividad de los silenciadores para reducir el nivel de sonido del escape de los motores.

JIS D1616-1995 Método de medición del ruido emitido por los sistemas de escape.

3 DEFINICIONES

Para los propósitos de esta Norma Venezolana COVENIN se aplican las siguientes definiciones.

3.1 Silenciador: es un componente que tiene por función reducir el ruido que se produce con el choque de los gases del escape de un motor de combustión interna con el aire exterior, a través de una expansión controlada de dichos gases (véase figura 1).

3.2 Resonador: es un componente que es utilizado en algunos vehículos automotores como auxiliar del silenciador, y, al igual que éste, su función es la de atenuar el nivel de ruido (véase figura 2).

3.3 Tapas internas: son los tabiques del silenciador y/o resonador, que delimitan los compartimentos de expansión y acústicas para los gases, teniendo como función servir de estructura, soporte y guía de los tubos internos (véase figura 1).

3.4 Tapas externas: son las tapas que limitan al silenciador y/o resonador y sirven de apoyo y guía a los tubos de entrada y salida. Su función es sellar al silenciador y/o resonador (véase figuras 1 y 2).

3.5 Tubos internos: son los componentes del silenciador y/o resonador fabricados con tubos de acero o planchas de acero dobladas en forma de tubos, soldadas o engrapadas, con o sin perforaciones (véase figuras 1 y 2).

3.6 Cámara: es una cubierta del tubo perforado cuya función es aumentar la eficiencia en la reducción del nivel de ruido (véase figuras 1 y 2).

3.7 Tubo de entrada: es el tubo que sirve de acople al bajante con el silenciador o el resonador (véase figuras 1 y 2).

3.8 Tubo de salida: es el tubo que sirve de acople al silenciador o al resonador con el tubo de cola (véase figuras 1 y 2).

3.9 Tubo de cola: es el tubo terminal del silenciador o resonador que orienta la salida de los gases de escape a la atmósfera y acopla con el tubo de salida.

3.10 Cuerpo: es el componente que constituye la estructura del silenciador y/o resonador; a él van fijadas las tapas y tubos internos (véase figuras 1 y 2).

3.11 Forro: es la lámina exterior que recubre al cuerpo del silenciador y/o resonador; su existencia depende del diseño (véase figuras 1 y 2).

3.12 Aislante: es el material que se coloca dentro del silenciador y/o resonador ocupando los espacios libres existentes entre el cuerpo y los tubos internos, con la finalidad de aumentar la eficiencia en la reducción del nivel de ruido. Su existencia depende del diseño (véase figura 3).

3.13 Pastilla (chaveta): es la pieza que sirve de guía y tope en los acoples entre tubos, silenciador y/o resonador en el sistema de escape.

3.14 Ranura: es la parte que sirve de encaje o alojamiento a la pastilla permitiendo el correcto posicionamiento del sistema de escape instalado en el vehículo.
3.15 **Flange**: es una junta de acople que permite la fijación entre las partes y el correcto posicionamiento del sistema de escape instalado en el vehículo (véase figura 4).

3.16 **Abrazadera**: es un dispositivo de fijación que retiene y sella la unión entre las partes cuando el sistema utiliza pastilla y ranura.

4 **MATERIALES**

Los materiales empleados en la fabricación de todas y cada una de las partes constituyentes del silenciador y/o resonador deben cumplir junto con el producto final con los requisitos establecidos en la sección 5 de la presente norma.

5 **REQUISITOS**

5.1 **Defectos visuales**

Los silenciadores y/o resonadores deben estar libres de hendiduras, fisuras, grietas, muestras de oxidación, golpes, abolladuras u otros defectos visuales similares que imposibiliten su correcto funcionamiento.

5.2 **Contraexplosiones**

Los silenciadores y/o resonadores ensayados según el punto 7.1 de la presente norma, no deben presentar defectos visuales apreciables, tales como: fisuras, roturas, grietas o desprendimientos en las tapas internas, tubos internos y cordones de soldadura, después de haber sido sometidos a 100 contraexplosiones continuas.

NOTA 1: Este requisito sólo aplica para silenciadores y/o resonadores a ser usados en sistemas de escape para vehículos con motor de combustión interna de encendido por chispa y carburado.

5.3 **Fuga**

Los silenciadores y/o resonadores ensayados según el punto 7.2 de la presente norma, no deben presentar valores de fuga superiores a 10 l/min a una presión de trabajo de 31 kPa. Cualquier diferencia en estos parámetros, establecida en los planos de diseño respectivos, previo acuerdo Cliente-Proveedor, no debe desmejorar los valores aquí establecidos.

5.4 **Durabilidad**

Los silenciadores y/o resonadores ya instalados en el vehículo y ensayados según el punto 7.3 de la presente norma, no deben presentar fisuras, roturas, grietas o daños estructurales originados por corrosión del material base, además del nivel de ruido por encima de lo indicado en el punto 5.5 de la presente norma, ú, otros daños estructurales que impidan su normal funcionamiento; luego de 20 000 Km ó 10 meses (lo que ocurra primero).

5.5 **Nivel de ruido**

Los silenciadores y/o resonadores ensayados según la Norma Venezolana COVENIN 1433 ó cualquiera de los anexos A y B de la presente norma, no deben presentar un nivel de ruido superior a 86 dBA cuando están destinados a ser usados en motocicletas; 88 dBA cuando están destinados a ser usados en automóviles u otros vehículos destinados al transporte de carga y pasajeros, con un peso bruto vehicular menor o igual a 2 Ton; y 93 dBA para los demás vehículos automotores.

6 **MUESTREO**

Este capítulo está redactado con el criterio de ofrecer una guía al consumidor para determinar la calidad de lotes aislados a ser comercializados.

A menos que exista un acuerdo previo Cliente-Proveedor más riguroso, el muestreo del producto debe cumplir con lo establecido a continuación.

6.1 **Lote**

Es una cantidad específica de silenciadores y/o resonadores a ser usados en vehículos automotores, fabricados bajo condiciones de producción presumiblemente uniformes que se someten a inspección como un conjunto unitario.

6.2 **Tamaño de la muestra**

6.2.1 Todos los silenciadores y/o resonadores que constituyen el lote son sometidos a verificación visual.

6.2.2 El tamaño de la muestra "n" para los demás ensayos contemplados en la sección 7 de esta norma depende del tamaño del lote y se determina según lo especificado en la tabla 1.

6.2.3 Para el ensayo de durabilidad (véase punto 7.3 de la presente norma) el tamaño de la muestra es de 1/20 parte de "n".

6.2.4 La muestra "n" se divide en dos (2) partes iguales siendo el primer grupo sometido al ensayo de fuga (véase punto 7.2 de la presente norma).

6.2.5 El otro grupo es sometido a la siguiente secuencia de ensayos:

a) Nivel de Ruido (Norma Venezolana COVENIN 1433).
b) Contraexplosión, cuando aplique, véase nota 1 de la presente norma (véase punto 7.1 de la presente norma).

6.3 Aceptación y rechazo

6.3.1 Si de los "n" elementos muestreados según el punto 6.2 de la presente norma, en cada ensayo la sumatoria de defectuosos es menor o igual al criterio de aceptación "Ac" indicado en la tabla 1, el lote será aceptado, de lo contrario será rechazado.

6.3.2 Si el resultado de algún ensayo es insatisfactorio debido a fallas técnicas en la realización del mismo, deberá descartarse este ensayo, repitiéndose nuevamente el muestreo.

6.4 Reclamación

6.4.1 Todo silenciador y/o resonador, aceptado por el Cliente y que durante su utilización evidencie fallas, o que aparentemente no estuviera de acuerdo con lo establecido en la presente norma, debe ser apartado adecuadamente, manteniéndose la identificación del lote de fabricación de manera que no se alteren sus características.

6.4.2 El plazo máximo para la presentación de la reclamación debe ser establecido previo acuerdo Cliente-Proveedor, pero en todo caso no debe ser menor al establecido en los instrumentos legales que rigen sobre la materia. Si se comprueba que el silenciador y/o resonador, no cumple con las exigencias de esta norma se tiene el derecho a rechazarlo.

<table>
<thead>
<tr>
<th>Tabla 1. Criterio de Aceptación y Rechazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño del Lote (N)</td>
</tr>
<tr>
<td>N ≤ 150</td>
</tr>
<tr>
<td>151 ≤ N ≤ 1 200</td>
</tr>
<tr>
<td>N ≥ 1 201</td>
</tr>
</tbody>
</table>

7 MÉTODOS DE ENSAYO

7.1 Contraexplosiones

Véase Nota 1

7.1.1 Aparatos

Tacómetro de precisión

7.1.2 Preparación de la muestra

La muestra a ensayar consiste en el número de silenciadores y/o resonadores que conforman la muestra indicada en el punto 6.2.5 de la presente norma. Las mismas deben poder instalarse en un (1) vehículo automotor.

7.1.3 Condiciones de ensayo

El ensayo se ejecuta en una carretera pavimentada con pendiente y de tránsito reducido, tal que permita al vehículo, después de interrumpir la corriente de encendido, seguir su desplazamiento aproximadamente con la misma velocidad inicial.

7.1.4 Procedimiento

7.1.4.1 Se lleva el vehículo de prueba con la muestra en ensayo ya instalada, a la superficie de ensayo y se acelera hasta alcanzar las 3 000 rpm en el motor.

7.1.4.2 Se deja de aplicar el acelerador y se desconecta la corriente de encendido del vehículo.

7.1.4.3 Se deja rodar al vehículo por aproximadamente 100 m en estas condiciones y se procede a conectar de nuevo la corriente de encendido, momento en el cual se produce la onda de contraexplosión acompañada de un nivel de ruido considerablemente alto.

7.1.4.4 Se procede a repetir el procedimiento indicado en los puntos 7.1.4.1 al 7.1.4.3 de la presente norma, el cual constituye un ciclo, unas 100 veces, teniendo especial cuidado de que en cada una de ellas se produzca la contraexplosión.

NOTA 2: Si a las rpm recomendadas en el punto 7.1.4.1 no se producen las contraexplosiones, se pueden variar las rpm a la velocidad indicada por la transmisión del vehículo, hasta obtener el efecto deseado.

7.1.4.5 Se desmonta la muestra en ensayo del vehículo en cuestión y se secciona desde el tubo de entrada hasta el de salida según su plano de simetría mayor.

7.1.4.6 Se procede a verificar el requisito establecido en el punto 5.2 de la presente norma.

7.1.5 Informe

El informe debe contener como mínimo:

7.1.5.1 Nombre del ensayo.

7.1.5.2 Fecha de realización del ensayo.
7.1.5.3 Norma Venezolana COVENIN utilizada durante el ensayo.

7.1.5.4 Identificación del personal técnico que efectuó el ensayo.

7.1.5.5 Identificación de la muestra ensayada.

7.1.5.6 Identificación del equipo de ensayo.

7.1.5.7 Número de ciclos realizados.

7.1.5.8 Resultados finales y comparación de los mismos con los requisitos exigidos por la norma.

7.1.5.9 Observaciones.

7.2 Fuga

7.2.1 Aparatos
Dispositivo de ensayo tal como el mostrado en la figura 5.

7.2.2 Preparación de la muestra
La muestra a ensayar consiste en el número de silenciadores y/o resonadores indicados en el punto 6.2.4 de la presente norma.

7.2.3 Procedimiento

7.2.3.1 Se ajusta el dispositivo de ensayo a 31 kPa como condición de operación del sistema de escape a menos que los planes de diseño (previo acuerdo Cliente-Proveedor) especifiquen lo contrario.

7.2.3.2 Se instala la muestra a ensayar en el dispositivo de ensayo.

7.2.3.3 Se conecta el dispositivo de ensayo a los tubos de entrada y salida de la muestra en ensayo.

7.2.3.4 Se iguala la presión en el tubo de salida a la del tubo de entrada y se registra el valor de flujo.

7.2.3.5 Se procede a verificar el requisito establecido en el punto 5.3 de la presente norma.

7.2.4 Informe
El informe debe contener como mínimo la información descrita en el punto 7.1.5 de la presente norma.

7.3 Durabilidad

7.3.1 Aparatos
Los mismos indicados en la Norma Venezolana COVENIN 1433.

7.3.2 Preparación de la muestra
La muestra a ensayar consiste en el número de silenciadores y/o resonadores que conforman la muestra indicada en el punto 6.2.3 de la presente norma. Las mismas deben poder instalarse en un (1) vehículo automotor.

7.3.3 Procedimiento

7.3.3.1 Se instala la muestra a ensayar en el vehículo de prueba.

7.3.3.2 Se registra el nivel de ruido según lo indicado en la Norma Venezolana COVENIN 1433

7.3.3.3 Se somete la muestra a ensayo a las condiciones normales de funcionamiento durante 20 000 Km ó 10 meses (lo que suceda primero).

7.3.3.4 Se repite el procedimiento indicado en el punto 7.3.3.2 de la presente norma, al alcanzarse las condiciones indicadas en el punto 7.3.3.3 de la presente norma.

7.3.3.5 Se desmonta la muestra ensayada del vehículo de prueba y se procede a verificar el requisito establecido en el punto 5.4 de la presente norma.

7.3.4 Informe
El informe debe contener como mínimo la información descrita en el punto 7.1.5 de la presente norma.

8 MARCAJE, ETIQUETAJE Y EMBALAJE

8.1 Marcaje y etiquetaje
Los silenciadores y/o resonadores deben llevar marcada en forma clara e indeleble en su superficie exterior la siguiente información:

8.1.1 Nombre o marca registrada del fabricante.

8.1.2 Fecha y/o código de fabricación.

8.1.3 La leyenda "Hecho en Venezuela" o país de origen.

8.1.4 Número de parte o identificación de la pieza.

8.1.5 Indicación del sentido de flujo de los gases de escape.
8.2 Embalaje

Los silenciadores y/o resonadores deben embalarse de forma adecuada de tal manera que no sufra ningún deterioro o alteración de sus propiedades durante el proceso de manejo, almacenamiento o traslado.

8.3 Certificado de Calidad

8.3.1 Previo acuerdo Cliente-Proveedora cada lote de silenciadores y/o resonadores debe ir acompañado de un certificado de calidad donde se identifique claramente el lote en cuestión y se reflejen como mínimo los resultados de los siguientes ensayos:

a) Fuga.

b) Nivel de Ruido.

8.3.2 Cualquier información adicional debe ser establecida por previo acuerdo Cliente-Proveedor.

BIBLIOGRAFÍA

[1] SAE J1207 FEB87 Determinación de la efectividad de los silenciadores para reducir el nivel de sonido del escape de los motores.

ANEXO A
(Normativo)

Método alternativo para determinar el Nivel de Ruido

A.1 Introducción
Este método alternativo busca evaluar la efectividad de un sistema de escape para reducir los niveles de ruido producidos por los motores de combustión interna. En este método están incluidos el silenciador y/o resonador, los tubos y demás componentes. Se utiliza un dinamómetro con lo cual no es necesario realizar el ensayo sobre el vehículo.

Este método está basado en la norma SAE J1207.

A.2 Método de Ensayo

A.2.1 Aparatos

A.2.1.1 Un sonómetro tipo 1 o S1A según especificaciones de la ANSI S1.4-1983 y S1.4A-1985. También puede ser usado un sonómetro conectado a un microfón provisto de una grabadora y/o un graficador, tal que cumplan con los requisitos establecidos en la Norma SAE J184.

A.2.1.2 Un calibrador de sonómetros que tenga una precisión de ± 0,5 dB.

A.2.1.3 Una pantalla la cual no afecte la respuesta del microfón en más de ± 1 dB para frecuencias que oscilen entre los 20 a los 4 000 Hz; y en más de ± 1,5 dB para frecuencias comprendidas entre los 4 000 y 10 000 Hz.

A.2.1.4 Un anemómetro (si y sólo si el ensayo se realiza al aire libre) para determinar la velocidad del aire en el medio con una precisión de ± 10% a 19 km/h (12 mph).

A.2.1.5 Dos (2) termómetros con una precisión de ± 1 °C (± 2 °F). Uno se usará para determinar la temperatura del aire de admisión al motor y, el otro, para determinar la temperatura del combustible a la entrada de la bomba.

A.2.1.6 Un barómetro con precisión de ± 0,5% para determinar la presión del aire de admisión al motor.

A.2.1.7 Un psicrómetro con una precisión de ± 5% para determinar la humedad relativa del aire.

A.2.1.8 Un motor de combustión interna conectado a un dinamómetro con indicadores de velocidad y torque del motor, con una precisión de ± 2% en el rango de velocidad y torque (potencia) del motor.

A.2.1.9 Un medidor de caudal o similar con una precisión de ± 1%, para determinar el flujo de combustible.

A.2.2 Preparación de la muestra

La muestra a ensayar consiste del número de silenciadores y/o resonadores que conforman la muestra indicada en la Norma Venezolana COVENIN 1433.

A.2.3 Condiciones de ensayo

A.2.3.1 El ensayo se efectúa en un ambiente determinado por un área libre desprovista de superficies reflectantes, tales como edificios o montañas, localizadas a más de 30 m (100 pies) del silenciador y/o microfón.

A.2.3.2 El área existente entre el tubo de cola del silenciador y/o resonador y, el microfón debe ser una superficie de concreto o asfalto sellado con un desnivel máximo de ± 0,05 m (± 2 pulgadas) en cualquier plano comprendido al menos a 3 m (10 pies) en todas las direcciones a partir de la línea que une al silenciador y/o resonador con el microfón.

A.2.3.3 El nivel de sonido intrínseco al área libre (incluyendo el efecto del aire ú otras fuentes de ruido, tales como, el motor) debe estar por debajo del nivel de ruido que se medirá en 10 dBA.

A.2.3.4 No más de una persona y un observador podrán estar localizadas a 15 m (50 pies) del tubo de cola del silenciador y/o resonador. Ambas personas deben estar localizadas una detrás de la otra en el momento de realizar la medición, con respecto al microfón.

A.2.4 Procedimiento

A.2.4.1 La muestra a ensayar se instala en el conjunto motor-dinamómetro conservando la disposición geométrica que tendrá una vez instalada en el vehículo.

A.2.4.2 Se fijan los parámetros de control en el dinamómetro hasta alcanzar las condiciones de estabilidad del motor especificadas por el fabricante a una velocidad fija y a carga máxima.

A.2.4.3 Se procede a registrar los siguientes parámetros:

a) Potencia del motor y flujo de combustible.
b) Velocidad del viento; temperatura, presión barométrica, humedad relativa y nivel de sonido del medio ambiente.

A.2.4.4 Se registra el valor del nivel de ruido (en la escala A) proveniente de la muestra en ensayo, colocando para ello el micrófono a 1,2 m (4 pies) sobre el suelo y a una distancia horizontal de 15 m (50 pies) del silenciador.

A.2.4.5 Se varía la velocidad del motor en por lo menos cuatro (4) valores comprendidos entre la fijada en el punto A.2.4.2 de la presente norma y 2/3 de dicho valor, fijando para ello una carga que permita mantener esa velocidad a plena abertura de la mariposa del motor.

A.2.4.6 Se repite el procedimiento descrito en los puntos A.2.4.3 al A.2.4.4 para cada una de las cuatro (4) velocidades.

A.2.4.7 Se procede a verificar el requisito establecido en el punto 5.5 de la presente norma.

A.2.5 Informe

El informe debe contener como mínimo la información descrita en el punto 7.1.5 de la presente norma.
ANEXO B
(Normativo)

Método alternativo para determinar el Nivel de Ruido

B.1 Introducción
Este método alternativo busca medir el nivel de ruido emitido por los sistemas de escape de los vehículos dotados de motores de combustión interna. En este método se simulan en el laboratorio, las condiciones normales de operación del sistema de escape. Este método está basado en la norma JIS D1616.

B.2 Método de Ensayo

B.2.1 Aparatos

B.2.1.1 Un sonómetro que cumpla con las especificaciones previstas en la JIS C 1505.

B.2.1.2 Un motor de combustión interna conectado a un dinamómetro con indicadores de velocidad y torque del motor.

B.2.1.3 Un anemómetro (si y sólo si el ensayo se realiza al aire libre) para determinar la velocidad del aire en el medio ambiente.

B.2.1.4 Un termómetro con una precisión de ± 1 °C (± 2 °F) para determinar la temperatura de los gases de escape.

B.2.1.5 Un barómetro con precisión de ± 0,5% para determinar la presión del aire.

B.2.1.6 Un psicrómetro con una precisión de ± 5% para determinar la humedad relativa del aire.

B.2.2 Preparación de la muestra
La muestra a ensayar consiste del número de silenciadores y/o resonadores que conforman la muestra indicada en la Norma Venezolana COVENIN 1433.

B.2.3 Condiciones de ensayo

B.2.3.1 El ensayo se efectúa en una cámara anecoica o en un ambiente determinado por un área libre desprovista de superficies reflectantes, tal como se muestra en las figuras B.1 y B.2, y donde la velocidad del viento no supere los 5 m/s.

B.2.3.2 El nivel de sonido intrínseco al área libre (incluyendo el efecto del aire) de otras fuentes de ruido, tales como, el motor) debe estar por debajo de lo especificado en la JIS Z 8731.

B.2.4 Procedimiento

B.2.4.1 La muestra a ensayar se instala en el conjunto motordinamómetro conservando en lo posible la disposición geometríc que tendrá una vez instalada en el vehículo. El conjunto puede estar situado dentro de la cámara anecoica o en el área libre descrita en el punto B.2.3 de la presente norma.

B.2.4.2 Se fijan los parámetros de control en el dinamómetro hasta alcanzar la mínima velocidad que asegure unas rpm del motor constantes.

B.2.4.3 Se procede a registrar los siguientes parámetros:
 a) Potencia del motor.
 b) Velocidad del viento; temperatura, presión barométrica y humedad relativa del medio ambiente.
 c) Temperatura de los gases de escape.

B.2.4.4 Se registra el valor del nivel de ruido (en la escala A) proveniente de la muestra en ensayo, colocando para ello al micrófono tal como se indica en la figura B.1 para el caso de sistemas de escape con una salida única; ó, como se indica en la figura B.2 para sistemas de escape con salidas múltiples distanciadas a 30 cm (11,8 pulg) o menos entre sí.

B.2.4.5 Se varía la velocidad del motor en por lo menos cuatro (4) valores comprendidos entre la fijada en el punto B.2.4.2 de la presente norma y el máximo valor de rpm que se alcance con la carga máxima del dinamómetro.

B.2.4.6 Se repite el procedimiento descrito en los puntos B.2.4.3 al B.2.4.4 para cada una de las cuatro (4) velocidades.

B.2.4.7 Se procede a verificar el requisito establecido en el punto 5.5 de la presente norma.

B.2.5 Informe
El informe debe contener como mínimo la información descrita en el punto 7.1.5 de la presente norma.
Figura 1.- Esquema de un silenciador

Figura 2.- Esquema de un resonador
Figura 3.- Corte transversal de un silenciador y/o resonador

Figura 4.- Acople por flange
Notas:
1.- Llave entrada aire
2.- Filtro inicial de aire
3.- Llave de ajuste presión de aire
4.- Manómetro entrada de aire
5.- Filtro final de aire
6.- 1er pulmón de descarga
7.- Llave de descarga de agua
8.- Ajuste de presión de aire de trabajo
9.- Corte de entrada de aire
10.- Manómetro central de ensayo
11.- Llave de corte
12.- Medidor de caudal
13.- Termómetro
14.- 2º pulmón de descarga
15.- Llave de prueba
16.- Inter conexión
17.- Dispositivo de ensayo
18.- Descomposición del sistema
19.- Medidor de tiempo

Figura 5.- Esquema dispositivo de ensayo de fuga
Figura B.1.- Disposición del micrófono para sistemas de escape de salida única

Figura B.2.- Disposición del micrófono para sistemas de escape de salida múltiple