AGUA POTABLE.
DETERMINACION DE CLORUROS
TRAMITE

COMITÉ: CTO ALIMENTOS

PRESIDENTE: Dr. Gustavo Toro Alayón
SECRETARIA: Ing. Milagros Díez Suárez

SUBCOMITÉ: CTO/SC-15 AGUA POTABLE

COORDINADORA: Ing. Milagros Díez Suárez

PARTICIPANTES

ENTIDAD

INSTITUTO NACIONAL DE OBRAS SANITARIAS (INOS)

MINISTERIO DE SANIDAD Y ASISTENCIA SOCIAL - DIVISIÓN DE HIGIENE DE LOS ALIMENTOS

INSTITUTO NACIONAL DE HIGIENE

AGUA MINERAL LOS ALPES
AGUA MINERAL EL CASTAÑO
AGUA MINERAL LA ROCIA
AGUA MINERAL QUENEPE
AGUA MINERAL AMAVENCA
AGUA MINERAL TREVI
AGUA MINERAL APESA
C.A. INDUSTRIAS LARA - CARABOBO (INLACA)

REPRESENTANTE

Ninoska Castillo de Mendoza

María Victoria Afanador
Carmen Eligia Pileto
Milagros Polanco
Rubén Villasana
Milvia Urbina
Germán Bello
Luís Betancourt
Mary Taramona
Rubén Villasana
José Quevedo
2 OBJETO

Esta norma contempla tres métodos para la determinación de cloruros en agua potable. Se detallan en obras científicas citadas.

2.1 PRINCIPIO DEL ENSAYO

Este método se basa en que en una solución neutral o ligeramente alcalina, el cromato de potasio puede indicar el punto final de la titulación de cloruros con nitrato de plata. El cloruro de plata es precipitado cuantitativamente antes de que el cromato de plata rojo se haya formado. La reacción es (equación 1):

3.2.1 BALANCE ANALÍTICO, con precisión de 0.1 mg.

3.2.2 MATERIAL DE VIDRIO DE USO COMÚN EN EL LABORATORIO.

3.3 REACTIVOS

Todos los reactivos deberán ser de grado analítico y las soluciones deberán prepararse con agua destilada, desionizada, libre de metales, con una conductividad específica entre 0.5 a 5 microhomb. en máximo.

3.3.1 AGUA LIBRE DE CLORURAS.

Si es necesario puede usarse agua redistilada o destilada desionizada.
3.3.2 Cromato de potasio, K_2CrO_4, para análisis.

3.3.3 Solución indicadora de cromato de potasio.
Se disuelve 50 g de cromato de potasio en una pequeña porción de agua destilada. Se hace solución de nitrato de plata (3.3.5) hasta que se forme un precipitado rojo definido. Se deja reposar 12 horas, se filtra y se diluye a 1 lito con agua destilada.

3.3.4 Nitrato de plata, $AgNO_3$, para análisis.

3.3.5 Cloruro de sodio, NaCl, para análisis.

3.3.6 Solución titulante patrón de nitrato de plata aproximadamente 0,0144 N.
Se disuelven 2,395 g de nitrato de plata en agua destilada y se diluye a 1000 ml. Se valora esta solución titulando con ella un volumen de solución de cloruro de sodio 0,0144 N (como si fuera una muestra) mediante el procedimiento descrito en 3.5.2. Se conserva la solución en un frasco cálido.

3.3.7 Solución patrón de cloruro de sodio 0,0144 N.
Se disuelven 0,241 mg de cloruro de sodio (previamente secado a 140°C/1 hora) en agua libre de cloruros y se diluye a 1000 ml. (1,00 ml = 0,5 mg Cl).

3.3.8 Sulfato de potasio y aluminio dodecahidratado, $AlK(SO_4)_2\cdot 12H_2O$, o Sulfato de amonio y aluminio dodecahidratado, $NH_4K(SO_4)_2\cdot 12H_2O$, para análisis.

3.3.9 Reactivos especiales para la remoción de interferencias.
3.3.9.1 Suspensión de hidróxido de aluminio. Se disuelven 125 g de sulfato de potasio y aluminio o sulfato de amonio y aluminio en 1 lito de agua destilada. Se calienta a 60°C y se añade 55 ml de hidróxido de amonio concentrado, suavemente con agitación. Se deja reposar alrededor de 1 hora y se transfiera la mezcla a un frasco...
grado. Luego, se lava el precipitado varias veces (más de 10 ve-
ces) por adiciones sucesivas de agua destilada, mezclando bien y de-
cantando el agua, hasta que ésta quede libre de cloruros. Debe ha-
cerse el análisis de cloruros al agua descantada. Una vez lavado
el precipitado se completa con agua destilada para obtener alrededor
de 1 litro de solución.

3.3.9.2 Solución indicadora de fenolfitalénesa. Se disuelve 0.5 g
de fenolfitalénes en 50 ml de alcohol etílico (95 %). Se transfiere
e un frasco aforado de 100 ml y se lleva a volumen con agua destila-
dada.

3.3.9.3 Solución de hidróxido de sodio 1 N.

3.3.9.4 Solución de ácido sulfúrico 1 N.

3.3.9.5 Solución de peróxido de hidrógeno 30 %.

3.4 CONDICIONES DE ENSAYO

3.4.1 Interferencias
Les iones bromuro, ioduro y cloruro se titulan el igual que los cla-
ruros, registrándose así como equivalentes de cloro.

Les iones sulfato, tiosulfato y sulfuro, interfieren, pero pueden
ser eliminados por tratamiento con peróxido de hidrógeno. Los orte-
sofatos en concentraciones mayores a 25 mg/l interfieren precipi-
tando como fosfato de plata. El hierro en exceso de 10 mg/l inter-
fiere enmascarando el punto final.

3.5 PROCEDIMIENTO

3.5.1 Preparación de la muestra

3.5.1.1 Se toman 100 ml de la muestra (según la Norma Venezolana
COVENIN 10xXIII-010) o una porción apropiada diluida a 100 ml.

3.5.1.2 Si la muestra es altamente colorada, se añade 3 ml de la
suspensión de hidróxido de aluminio (3.3.9.1), se mezcla, se deja
suspensión al cabo de un minuto y se somete a filtrado con papel
filtrante.
sedimentar, se filtra, se lava al sedimento retenido en el filtro y se recoge ese agua junto con la muestra ya filtrada.

3.5.1.3 En la presencia de sulfuro, sulfito o tiosulfato, se añade 1 ml de peróxido de hidrógeno al 30 % y se agita por 1 minuto.

3.5.2 Titulación

3.5.2.1 Se titulan las muestras en el intervalo de pH entre 7 y 10 directamente. Si las muestras no están en este intervalo de pH, se añaden soluciones de ácido sulfúrico o hidróxido de sodio.

3.5.2.2 Se añade 1 ml de solución indicadora de cronato de potasio. Se titula con la solución patrón de nitrato de plata hasta un color amarillo rosado del punto final.

3.5.2.3 Se estandarizan la solución de nitrato de plata y se determina el volumen de nitrato de plata gastado en la titulación de un blanco con agua destilada según el método descrito en 3.5.2.1. En este método, es usual un consumo de 0,2 a 0,3 ml en la titulación del blanco.

3.6 EXPRESIÓN DE RESULTADOS

El contenido de cloruros en la muestra se expresa en miligramos por litro y se calcula en la siguiente forma:

\[\text{mg. Cl/L} = \frac{(A - B) \times N \times 35.45 \times 1000}{V} \]

Donde:

A = Volumen de la solución de nitrato de plata gastado en la titulación de la muestra, en mililitros.

B = Volumen de la solución de nitrato de plata gastado en la titulación del blanco, en mililitros.

N = Normalidad de la solución de nitrato de plata.

V = Volumen de muestra, en mililitros.
3.7 INFORME
El informe del ensayo deberá indicar como mínimo lo siguiente:

1) Ensayo realizado según esta norma COVENI.
2) Fecha de realización del ensayo.
3) Identificación de la muestra.
4) Resultados del ensayo.
5) Observaciones.

4) MÉTODO DE CHARPENTIER - VOLHARD

4.1 PRINCIPIO DEL ENSAYO
Los cloruros de un volumen conocido de agua precipitan en presencia de ácido nítrico por un exceso de nitrato de plata valorado. Éste exceso de sal de plata se determina con una solución valórea de sulfúrica nuclo vinculada en presencia de plomo blanco como indicador.

4.2 EQUIPO

4.3 REACTIVOS
Todos los reactivos deberán ser de grado analítico y las soluciones deberán prepararse con agua destilada, destilada, libre de metales, con una conductancia específica entre 0,5 a 5 micromhos/cm máximo.

4.3.1 Ácido nítrico puro (HNO₃).

4.3.2 Nitrato de plata, AgNO₃.

4.3.3 Solución de nitrato de plata 0,1 N.
Se pesan 17,3 g de nitrato de plata y se diluyen a 1000 ml en un tarro aforado con agua bidestilada. Se valora la solución con solu-
ción de ácido clorhídrico 0,1 % de valor rigurosamente conocido utilizándolo como indicador el cromato de potasio.

4.3.4 Sulfocianuro potásico o amónico.

4.3.5 Solución de sulfocianuro potásico o amónico 0,1 N.

4.3.6 Alumbrado férrico-amónico en solución saturada, decolorado con algunas gotas de ácido nítrico.

4.3.7 Suspensión de nitróxido de aluminio.

Se disuelven 125 g de sulfato doble de aluminio y potasio, \(\text{K}_2\text{Al}_2(\text{SO}_4)_4 \cdot 24\text{H}_2\text{O} \) en 1 l de agua destilada; se calienta a 60°C y se añaden 55 ml de amoniaco concentrado; se lava varias veces seguidas el precipitado hasta que esté libre de cloruros.

4.4 CONDICIONES DE ENSAYO

4.4.1 Interferencias.

4.4.1.1 La presencia de bromuros, yoduros y cloruros introduce errores por exceso.

4.4.1.2 Para obtener resultados más precisos, conviene separar por filtración el precipitado de halógenuro de plata y efectuar la determinación con una parte aliquote del filtrado.

4.4.1.3 En el caso de aguas que contengan sulfuros, hipo sulfítos o materiales orgánicos en cantidades importantes, conviene destruir estos cuerpos por oxidación antes de la determinación. En este caso puede usarse la técnica siguiente:

Se coloca la muestra en un metro Erlenmeyer, así como el nitrito de plata y el ácido nítrico. Se hiere por 5 min con una cantidad suficiente de peróxido de potasio hasta coloración rosa débil.

Se destruye el exceso de peróxido de potasio con nitrato sódico, glucosa o alcohol y se deja airar. Se completa a un volumen conocido y se procede a la determinación sobre una parte aliquote de la solución.
4.4.1.4 Los ortofosfatos en cantidades superiores a 25 mg/l precipitan en forma de fosfato de plata.

4.4.1.5 Si el agua a analizar está muy coloreada, se añaden 3 ml de suspensión de hidróxido de aluminio, se deja en reposo y se filtra.

4.5 PROCEDIMIENTO

4.5.1 Se transfieren 100 ml de agua filtrada a un matraz Erlenmeyer de 250 ml y una cantidad conocida de nitrato de plata 0,1 N en exceso.

4.5.2 Se agregan 5 ml de ácido nítrico concentrado y 2 ml de alúmina férrea.

4.5.3 Se valora el exceso de nitrato de plata con solución de sulfocianuro 0,1 N hasta obtener una coloración rojiza persistente, agitan
do después de cada adición de reactivo.

4.6 EXPRESIÓN DE RESULTADOS

4.6.1 El contenido de cloruros en la muestra se expresa en miligramos de Cl por litro y se calcula en la siguiente forma:

\[\text{mg Cl/l} = \frac{(A-B) \times 8 \times 35.45 \times 1000}{V} \]

Donde:
- \(A\) = volumen de la solución de nitrato de plata 0,1 N utilizado, en mililitros.
- \(B\) = volumen de la solución de sulfocianuro 0,1 N empleado en la va-
 loración.
- \(N\) = normalidad de la solución de sulfocianuro. Se eva
 luará en forma de sulfato de plata.
- \(V\) = volumen de muestra, en mililitros.

4.7 ANEXO 3: RESULTADOS DE LOS REACTIVOS
4.6.2 Para expresar el contenido de cloruros en mg NaCl/l:

\[\text{mg NaCl/l} = \frac{(A - B) \times N \times 56.5 \times 1000}{V} \]

4.7 INFORME

Igual a 3.7.

5 METODO DEL NITRATO DE MERCURIO

5.1 PRINCIPIO DEL ENSAYO

Los cloruros pueden ser titulados con nitrato de mercurio debido a la formación de cloruro de mercurio soluble y ligeramente disociado. En el intervalo de pH 2.5-2.8 la disolución indica el punto final de la titulación por la formación de un complejo púrpura con exceso de iones mercuricos.

5.2 EQUIPO DE ENSAYO

Igual a 3.2.

5.3 REACTIVOS

- 0.001 M NaOH (100 ml) x \(25/100\) cm

Todos los reactivos deberán ser de grado analítico y las soluciones deberán prepararse con agua destilada, desionizada, libre de metales, con una conductancia específica entre 0.5 a 5 microhemos/cm máximo.

5.3.1 Solución de ácido nítrico 0.1 N.

5.3.2 Solución de hidróxido de sodio 0.1 N.

5.3.3 Reactivo indicador mixto.

Se disuelven 3 g de 2-fenil-benzelo en polvo y 0.5 g de azul de bromofenol en polvo en 750 ml de alcohol etílico o isopropílico (al 95 %) y se diluye a 1 litro con alcohol etílico o isopropílico.

5.3.4 Solución patrón de cloruro de sodio 0.0141 N

Se disuelven 0.241 ng de cloruro de sodio (previamente secado a
5.3.5 Nitrato de mercurio, $\text{Hg(NO}_3\text{)}_2 \cdot 2\text{H}_2\text{O}$ para análisis.

5.3.6 Solución titulante patrón de nitrato de mercurio aproximadamente 0,141 N.

5.3.6.1 Se disuelve 25 gr de nitrato mercuricio en 900 ml de agua destilada que contiene 5 ml de ácido nítrico concentrado. Se diluye hasta casi un litro y se lleve a cabo una estandarización preliminar, titulando la mezcla de 25 ml de solución patrón de cloruro de sodio (5.3.4) con 25 ml de agua destilada y 0,5 ml del reactivo indicador mixto (5.3.5) (se mezcla bien). El color debe ser púrpura. Se añade solución de ácido nítrico 0,1 N gota a gota, hasta que el color se torne amarillo, se titula con solución patrón de nitrato mercuricio 0,141 N hasta el primer púrpura oscuro permanente. Se titula un blanco de agua destilada en la misma forma que la mezcla de solución de cloruro de sodio y agua destilada mencionada anteriormente.

5.3.6.2 Se ajusta la concentración de la solución titulante a 0,141 N y se hace una valoración final.

5.4 CONDICIONES DE ENSAYO

5.4.1 Interferencias
Los iones bromauro y iodo, se titulan con el nitrato de mercurio en la misma forma que el ión clorouro. Los iones azufre, férrico y sulfito interferen cuando están presentes en concentraciones mayores a 10 mg/l.

5.5 PROCEDIMIENTO

5.5.1 Titulación de muestras con alto contenido de cloruros.

5.5.1.1 Se colocan 50 ml de muestra en un vaso de precipitados de 150 ml (si se gastan más de 5 ml de solución titulante (5.3.6) se ha
ce una dilución de la muestra, tomando 5 ml o más de muestra, diluindo a 50 ml con agua destilada.

5.5.1.2 Se añade aproximadamente 0,5 ml del reactivo indicador mixto y se mezcla bien. El color debe ser púrpura. Se añade solución de ácido nítrico 0,1 N, gota a gota hasta que el color se torne enmillo por completo. Se titula con solución titulante de nitrato de mercurio 0,141 N hasta el primer púrpura oscuro permanente.

5.5.1.3 Se titula un blanco de agua destilada utilizando el mismo procedimiento.

5.6 EXPRESIÓN DE RESULTADOS
El contenido de cloruros en la muestra se expresa en miligramos por litro y se calcula de la siguiente forma:

\[\text{mg Cl/l} = \frac{(A - B) \times N \times 35.45}{1000} \]

Donde:
- \(A \) = Volumen de solución de nitrato de mercurio 0,141 N gastado en la titulación de la muestra, en mililitros.
- \(B \) = Volumen de solución de nitrato de mercurio 0,141 N gastado en la titulación del blanco, en mililitros.
- \(N \) = Normalidad de la solución de nitrato de mercurio.
- \(V \) = Volumen de muestra, en mililitros.

\[\text{mg NaCl/l} = \left(\frac{\text{mg Cl/l}}{1,65} \right) \times 1000 \]

4.7 INFORME
Ver 3.7.
BIBLIOGRAFÍA

