AGUA.
DETERMINACION DE SULFURO
P.P. INGENIEROS ASOCIADOS
ACUA MINERAL "AMANECER"

PUBLICACIÓN
Fecha de envío 07-05-86
Duración 45 días
FECHA DE APROBACIÓN POR EL COMITÉ 05-02-87
FECHA DE APROBACIÓN POR LA COMUN 21-04-87

TINA VERCHI
HARRY TANAGRA
1 NORMAS COMÚN A CONSULTAR

COMFIN 10 XIII-010 Água. Método para la toma de muestras

2 OBJETIVO Y CAMPO DE APLICACIÓN

Esta norma contempla dos métodos de ensayo para la determinación del sulfato en aguas naturales tratadas y de desecho.

2.1 MÉTODO DEL ÁZUL DE METILENO

2.2 MÉTODO FOTOMÉTRICO

3 MÉTODO DEL ÁZUL DE METILENO

3.1 RESUMEN DEL ENSAYO

El método se basa en la reacción del sulfato, el cloruro férrico y el dimetil-p-fenilendiamina para producir el azul de metileno. Se agrega fórmico y amonio después del desarrollo del color para renovar el color proveniente del cloruro férrico.

3.2 EQUIPO

3.2.1 Botellas de vidrio con tapa para sello hidrostático, de 100 ml.

3.2.2 Tubos de ensayo, de 125 ml de largo y 15 ml de diámetro externo.

3.2.3 Botellas que permitan limpiar 20 gotas/ml de la solución de azul de metileno.

Nota. Para lograr notas uniformes se sostiene el botero en posición vertical y se deja que las gotas se formen lentamente.

3.2.4 Si la determinación del color se hace fotométricamente en vez de la apreciación visual, se utiliza uno de los dos equipos indicados a continuación:

3.2.4.1 Espectrofotómetro, a una longitud de onda de 664 nm, con células que tengan un paso de luz de 1 cm y 1 mm.

3.2.4.2 Fotómetro con filtro, provisto de un filtro que tenga una transmisión máxima cercana a los 660 nm.
3.2.5 Material de laboratorio

3.3 PROCEDIMIENTOS

Todos los reactivos a utilizar deberán ser de grado analítico.

3.3.1 Acetato de zinc dihidratado. \(\left(\text{C}_{2}\text{H}_4\text{O}_4\text{Zn}\right)_2 \times 2\text{H}_2\text{O}\)

3.3.2 Hipiónico de sodio. NaN₃

3.3.3 Oxalato di-n-timetil-p-fenilenediamina.

3.3.4 Ácido sulfúrico \((\text{H}_2\text{SO}_4)\)

3.3.5 Cloruro férrico hexahidratado. \((\text{FeCl}_3\times 6\text{H}_2\text{O})\)

3.3.6 Fosfato ácido diamónico. \(\left(\text{H}_4\text{PO}_4\right)_2\)

3.3.7 Azul de metileno. grano U.S.P. El contenido de colorante deberá estar indicado en la etiqueta y deberá ser 84% o más.

3.3.8 Solución de sulfuro de sodio hexahidratado. \((\text{Na}_2\text{S}_2\text{O}_3 \times 9\text{H}_2\text{O})\)

3.3.9 Solución de ácido sulfúrico \((1+1)\).

3.3.10 Solución de acetato de zinc dihidratado \((2 N)\).

Se disuelven 220 g de acetato de zinc en 870 ml de agua destilada.

3.3.11 Solución de hidróxido de sodio \((6 N)\).

3.3.12 Solución patrón de ácido amoníaco sulfúrico. Se disuelven 27 g de oxalato di-n-timetil-p-fenilenediamina en una mezcla fría de 50 ml de ácido sulfúrico concentrado y 20 ml de agua destilada. Se enfría y diluye a 100 ml con agua destilada.

NOTA: Se utiliza un oxalato fresco porque un reactivo viejo puede harscarse oxidado y decolorado a un grado tal que resultará en colores intermedios durante la prueba. El reactivo se coloca en un frasco de vidrio color ámbar. Cuando esta solución patrón es diluida y utilizada en el procedimiento con una muestra cruda de sulfuros, tendrá un color rosado, pero al transcurrem 3 días se hard imcolor.

3.3.13 Solución de ácido amoníaco sulfúrico.

Se diluye 25 ml de la solución patrón en 75 ml de ácido sulfúrico \((1+1)\), se almacena en un frasco de vidrio color ámbar.

3.3.14 Solución de cloruro férrico.

Se disuelven 100 g de cloruro férrico hexahidratado en 40 ml de agua destilada.

3.3.15 Solución de fosfato ácido diamónico.

Se disuelven 400 g de fosfato ácido diamónico en 800 ml de agua destilada.
3.1.16 Solución de azul de metileno II.

Se disuelve 1 g del colorante azul de metileno en agua destilada y se completa hasta 1 l. Esta solución tendrá aproximadamente la concentración correcta, pero varía a lo largo de la serie dependiendo de las particularidades de los descoloradores utilizados. Se toma una solución de sulfuro de concentración conocida, de forma tal que 0.05 ml (1 ml = 1 g en sulfuro).

3.1.16.1 Valoración.

a) Se coloca un vaso de precipitado pequeño, varios gramos de cristales líquidos lavados de sulfuro de sodio. Se desea suficiente agua destilada para cubrir los cristales.

b) Se agita suavemente durante algunos minutos, luego se transfiere la solución a otro recipiente. Esta solución reacciona lentamente con el azul metileno pero el cuarto no tiene importancia en el lapso de algunas horas.

Nota: Se prepara la solución diariamente.

c) A 1 l de agua destilada se agrega una cota de la solución y se mezcla. Se determina la concentración mediante el procedimiento del azul de metileno y el procedimiento volumétrico.

d) Se repite utilizando más o menos de la mitad de la solución de sulfuro de sodio o bien volúmenes menores de agua hasta que por lo menos se hayan realizado cinco determinaciones con un intervalo de concentraciones de sulfuro que oscile entre 1 y 8 mg/l. Se calcula el porcentaje de error promedio de los resultados obtenidos con el azul de metileno comparado con los resultados volumétricos. Si el error promedio es relativo, es decir que los resultados del azul de metileno son más bajos que los resultados volumétricos, se diluye la solución de azul metileno en el mismo porcentaje de manera tal que se utilice mayor volumen para igualar los colores. Si los resultados del azul de metileno son altos, se aumenta la concentración de la solución apropiadamente más colorante.

3.1.17 Solución de azul de metileno II.

Se diluye 10 ml de la solución valorada del azul de metileno I y se lleva a 100 ml.

3.4 CORRECCIONES DEL ENSAYO

3.4.1 Interferencias

3.4.1.1 Los agentes reductores fuertes interfieren en el método al evitar la formación del color azul. El resultado en concentraciones mayores de 10 mg/l puede retardar la formación del color parcial o totalmente.

El sulfuro evitará la reacción si su concentración es muy elevada en el remate de algunos ciento miligramos por litro.

3.4.1.2 Para evitar la comprobación de resultados negativos falsos, se utiliza el método de Antinonea para obtener un resultado cualitativo en análisis desechos industriales que sea barato y que contenga sulfuros, pero que no desarrollen color por el método del azul de metileno.
3.4.1.3 El método es factible si se encuentra en desechos de cemex, metacrilato, como nitrato, puede observarse la formación del color si su concentración excede los 2 mg/l. El fenilharnesuro produce un color azul.

3.4.1.4 Se eliminan las interferencias debido a los sulfuros, cloruro, yodo y muchas otras sustancias solubles, pero en el fenilharnesuro, precipitado primero el sulfuro como sulfuro de zinc y luego se produce el fenilharnesuro que se extrae con agua destilada.

3.4.1.5 Se utiliza este método sorprendente, aún cuando no se requiere para la detección de interferencias, cuando se van a concentrar los sulfuros.

3.4.2 Límites de detección

3.4.2.1 El método del azul metileno es aplicable a concentraciones de sulfuros de 0.02 mg/l hasta 20 mg/l.

3.4.3 Precisión y exactitud

3.4.3.1 La exactitud del método es de aproximadamente 10%. No se ha determinado la desviación normal.

3.5 PREPARACIÓN Y CONSERVACIÓN DE LAS MUESTRAS

3.5.1 recepción de la muestra

3.5.1.1 Se toman las muestras con un pincel de silicona. Para preservar la muestra en la determinación de sulfuro se agregan 4 gotas de solución de acetato de zinc 2% por cada 100 ml de muestra. Se llena totalmente el recipiente y se deja en cámara de aire y se mide herméticamente.

3.5.2 Prueba cualitativa

Esta prueba es recomendable para el análisis de desechos industriales que contengan sustancias interferentes que podrían producir resultados negativos falso con el procedimiento del azul metileno.

3.5.2.1 Prueba de antimonio

3.5.2.1.1 A unos 200 ml de muestra se agrega 0.5 ml de una solución nitrato de antimonio y potasio y 0.5 ml de solución de ácido clorhídrico de exceso de la alcalinidad fenolftaleína.

3.5.2.1.2 El sulfuro de antimonio amarillo es disociable a una concentración de sulfuro de 0.5 mg/l. La comparación de muestras de concentraciones conocidas de sulfuro con 5 \(\mu l \) de esta provee un carácter innegablemente cuantitativo.

3.5.2.1.3 Las únicas interferencias conocidas son los metales metileno, tales como el plomo que retiene tan temporalmente las sustancias que éstas no llegan a producir el sulfuro de antimonio y la clorurita, la cual se descolora en una solución de 0.1% para producir sulfuros.

3.5.3 preparación de la muestra

3.5.3.1 Se coloca el 0.5 ml (5 gotas) de la solución de acetato de zinc al muestra.
de un trozo de vidrio de 10 cm. Se libera con la muestra y se agrega 0.10 ml (2
trozos) de la solución de bicromato de sodio.

1.5.3.2 Se tira el trozo en la solución del reactivo púrpura de sulfato, y se mezcla haciendo rolar hasta soltar y hacerlo girar sobre un eje transverso.

1.5.3.3 Se varía el volumen de los reactores anegaditos de acuerdo a la muestra, de forma tal que el precipitado resultante se sea completamente voluminoso y sedimento rápidamente.

1.5.3.4 Se agrega suficiente hidróxido de sodio para producir un valor de p~ por encima de 9 y se deja que el precipitado se sediments durante 30 min.

1.5.3.5 La muestra tratada será relativamente estable y se puede conservar durante varias horas. Si hay hueco hierro presente la oxidación puede presentarse con relativa aceleración.

1.5.3.6 Al utilizar el método del azul de retículo, se deja sedimentar el precipitado durante 30 min y se recoge el sedimento hasta que sea posible no rendir el precipitado.

1.5.3.7 Se agrega agua destilada, se agita y se extrae el volumen de muestra necesaria.

1.5.3.8 Si hay sustancias interventes presentes en grandes concentraciones, se sedenta, se recoge y se agrega agua destilada.

1.5.3.9 Si se sabe que la concentración de sulfatos es baja, se agrega suficiente agua destilada para llevar el volumen a la cifra de una cuarta parte del volumen original.

1.5.3.10 Esta técnica se utiliza para analizar muestras de concentraciones muy bajas de sulfatos.

1.6 RECOMENDACIONES

1.6.1 Desarrollo del color

1.6.1.1 Se transfiere 7.5 ml de la muestra a cada uno de los tubos de ensayo, utilizando una pipeta de plomo donde se introduzca hasta una marca en los tubos.

1.6.1.2 Se agrega a uno de los tubos marcado A, 0.5 ml del reactivo de sulfato-sulfuroso-ácido y 0.15 ml de solución de cloruro férrico. Se mezcla inmediatamente invirtiendo lentamente el tubo durante una vez (una vez) y se observa la presencia del color sulfuroso indicado por la aparición del color azul en el tubo A.

1.6.1.3 Se agrega a otro de los tubos marcado A, 0.5 ml de solución de cloruro férrico y se mezcla, la presencia del color sulfuroso indicado por la aparición del color azul en el tubo A.

1.6.1.4 El desarrollo del color usualmente se completa en 1 min para entrar en un tiempo más prolongado para liberar la determinación del color rosado inicial. Luego de transcurrir 3 a 5 min, se agrega a cada tubo
1.6.1 El color de la solución de fenrato de arsénico se espera que dure 20 min y se toma la comparación del color. Si se utiliza inicialmente el azufre de zinc, se espera por lo menos 10 min antes de hacer la comparación visual.

1.6.2 Determinación del color

1.6.2.1 Estimación visual del color.

1.6.2.1.1 Se anexa agua a cada la solución de azul de metileno I o II, dependiendo de la concentración de sulfuros y de la precisión deseada. Si el tubo I hasta que el color se inicie con el del tubo II, Si la concentración excede los 20 mg/l se repite la prueba con una porción de la muestra diluida a una décima.

1.6.2.2 Relación fotométrica del color.

1.6.2.2.1 Para la medición de concentraciones de sulfuros desde 0.1 hasta 2.0 mg/l se supone una celda con un paso de luz de 1 cm.

1.6.2.2.2 Se utilizan pasos de luz más cortos o más largos para concentraciones mayores o menores respectivamente. El límite superior del método es 20 mg/l.

1.6.2.2.3 Es calibrar el instrumento en cero con una porción de la muestra tratada del tubo I.

1.6.2.2.4 Se prepara la curva de calibración en base a pruebas fotométricas hechas a soluciones de sulfuros de sodio que hayan sido analizadas simultáneamente por el método volumétrico, trazando la curva de Concentración vs Absorbancia.

1.6.2.2.5 Se puede asumir una relación lineal entre la Concentración y la Absorbancia entre 0 y 1.0 mg/l.

1.7 EXPRENSIÓN DE LOS RESULTADOS

1.7.1 Estimación visual del color

1.7.1.1 (En la solución de azul de metileno I valorado de forma tal que 0.05 ml de agua = 1.0 mg/Sulfuro/l. Cuando se utilizan 2.5 ml de nuestra solución con 100 mg/l sulfuro = Número de gotas de la solución I x 0.1 x Número de estan de la solución II)

1.7.2 Relación fotométrica del color

1.7.2.1 La concentración de sulfuros presente en la muestra se lee a partir de la curva de calibración y se expresa en miligramos/litro.

3.0 NORMAS

El tiempo del ensayo debe ser mínimo la siguiente información:

3.0.1 Ensayo realizado según la presente norma (indicando el método empleado).

3.0.2 Fecha en la cual se realizó el ensayo.

3.0.3 Identificación de la muestra.
4.1 RESUMEN DEL EXPERIMENTO

Este método se basa en la adición de yodo en exceso para indicar la cantidad de sulfuro presente. El yodo que no reacciona se titula con sulfato de sódio. El sulfuro se determina reconociendo la cantidad de yodo que reacciona. Una titulación basada en esta reacción es un método preciso para la determinación de sulfuro en concentraciones de alrededor de 1 mEq/L. Este método puede ser usado en aguas de descarga y aguas sulfurosas en las que las interferencias son removidas inicialmente.

4.2 MATERIALES

4.2.1 Palanca analítica.
4.2.2 Pipetas.
4.2.3 Pipetas graduadas de 1.2 y 50 ml.
4.2.4 Retrazos ácido de 200 y 1000 ml.
4.2.5 Retrazos Erlenmeyer de 200 y 500 ml.
4.2.6 Material de laboratorio.

4.3 REACTIVOS

Todos los reactivos a utilizar deberán ser de grado analítico.
4.3.1 Ácido sulfúrico (H₂SO₄)
4.3.2 Hidróxido de sodio (NaOH)
4.3.3 Solución de ácido clorhídrico 6N.
4.3.4 Solución de hidróxido de sodio 6N.
4.3.5 Ameisina en polvo, soluble.
4.3.6 Sulfato de sódio (Na₂SO₄)
4.3.7 Sulfato de sodio pentahidratado (Na₂SO₄·5H₂O).
4.3.8 Bicarbonato de potasio (KHCO₃)
4.3.9 Solución patrón de bicarbonato de potasio (0.025 M).

Se añade a un retazos ácido de 1000 ml se disuelven 12.4 ml de bicarbonato de potasio en agua destilada y se lleva a volumen.
\[\text{mL de muestra} = \frac{(A \times 1) - (C \times F) \times 16.000}{(A \times E) - (C \times F)} \]

Donde:

- \(A \): Volumen de la solución yodada, en mililitros.
- \(B \): Nalidad de la solución yodada.
- \(C \): Volumen de la solución de resultado de níquel, en mililitros.
- \(D \): Nalidad de la solución de resultado.

1 mL de solución yodada 0.025 % reaccionan con 0.4 mg de sulfuro.

4.6 INFORME

Ver punto 3.8.

BIBLIOGRAFÍA

COMISION VENEZOLANA
DE NORMAS INDUSTRIALES MINISTERIO DE FOMENTO
Av. Andrés Bello Edif. Torre Fondo Común Pisos 11 y 12
Telf. 575. 41. 11 Fax: 574. 13. 12
CARACAS