CRUDOS
DETERMINACION DEL CONTENIDO DE AGUA POR DESTILACION
TRAMITE

COMITE TECNICO CT4: PETROLEO, GAS Y SUS DERIVADOS
PRESIDENTE: JESUS GONZALEZ ESCOBAR
VICEPRESIDENTE: GILBERTO ARAUJO
SECRETARIA: MARIELA VILORIA

SUBCOMITE: CT4/SC6 "METODOS DE ENSAYO"
COORDINADORES: RUBEN AULAR, MARIELA VILORIA

PARTICIPANTES

<table>
<thead>
<tr>
<th>ENTIDAD</th>
<th>REPRESENTANTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORPOVEN, S.A.</td>
<td>FERNANDO MANZO</td>
</tr>
<tr>
<td></td>
<td>JOSE L. GARCIA</td>
</tr>
<tr>
<td></td>
<td>MARGIE DELL'ORA</td>
</tr>
<tr>
<td>INTEVEP, S.A.</td>
<td>MARIA DE GUERRERO</td>
</tr>
<tr>
<td></td>
<td>MARILDA DE ABBREU</td>
</tr>
<tr>
<td></td>
<td>OSWALD PLATTEAU</td>
</tr>
<tr>
<td>LAGOVEN, S.A.</td>
<td>ALEJANDRO GUERRA</td>
</tr>
<tr>
<td></td>
<td>BELKIS LOPEZ</td>
</tr>
<tr>
<td></td>
<td>ADOLFO PALACIOS</td>
</tr>
<tr>
<td>MARAVEN, S.A.</td>
<td>SANDOR FELKAI</td>
</tr>
<tr>
<td></td>
<td>MANUEL CASTILLO</td>
</tr>
<tr>
<td></td>
<td>ESTEIA FERNANDEZ</td>
</tr>
<tr>
<td></td>
<td>IRAMA DE SALDIVIA</td>
</tr>
<tr>
<td>MENEVEN, S.A.</td>
<td>BERNARDO BEYER</td>
</tr>
<tr>
<td></td>
<td>JULIAN MATA</td>
</tr>
<tr>
<td>MINISTERIO DE ENERGIA Y MINAS</td>
<td>JESUS GONZALEZ E.</td>
</tr>
</tbody>
</table>

DISCUSION PUBLICA

Fecha de envío: 18-06-87
Duración: 45 días
FECHA DE APROBACION POR EL COMITE: 15-12-88
FECHA DE APROBACION POR LA COVENIN: 02-08-89
NORMA VENEZOLANA
CRUDOS. DETERMINACION DEL CONTENIDO DE AGUA POR DESTILACION

COVENIN 2582-89

1 NORMAS COVENIN A CONSULTAR

COVENIN 950-81 Muestreo de petróleo crudo y sus derivados.

COVENIN 427-81 Determinación de agua por destilación en productos de petróleo y materiales bituminosos.

COVENIN 422-82 Determinación del contenido de agua y sedimentos en crudos de petróleo.

2 OBJETO Y CAMPO DE APLICACION

2.1 Esta Norma Venezolana establece el método para la determinación del contenido de agua en crudos por destilación.

2.2 Conocer el contenido de agua en un crudo es importante para efectos de refinación, compra, venta, transporte y manejo del producto.

3 RESUMEN DEL METODO

Se calienta la muestra bajo condiciones de reflujo con un solvente inmiscible en agua que co-destile con ella. El solvente y el agua condensados son continuamente separados en una trampa; el agua se deposita en la sección graduada de la misma y el solvente se devuelve al balón de destilación.

4 EQUIPOS

4.1 El equipo requerido, se muestra en la Fig. 1 y consta de un balón de destilación, un condensador, una trampa de vidrio graduada y un calentador.

4.1.1 Balón de Destilación. De vidrio, de fondo redondo, con capacidad de 1000 ml.

4.1.2 Trampa de Vidrio. De 5 ml, con graduaciones de 0,05 ml.

4.1.3 Condensador. Tipo Liebig, de 400 ml. En la parte superior se debe colocar un tubo de secado para impedir la entrada de humedad atmosférica.

4.1.4 Calentador. Cualquier calentador eléctrico que pueda distribuir uniformemente el calor en la parte inferior del balón. Por razones de seguridad es preferible usar una manta de calentamiento.
4.1.5 El equipo se debe calibrar de acuerdo con la técnica descrita en el punto 8.2.

5 REACTIVO

5.1 XILENO, grado reactivo. (Se determina un blanco colocando 400 ml del solvente en el equipo de destilación y se aplica como se indica en el punto 8.3. El blanco se determina con aproximación a 0,025 ml y se usa para corregir el volumen de agua en la trampa, como se indica en el punto 10). Los requisitos especiales se muestra en el punto 8.1.2.

PRECAUCION

El xileno es extremadamente inflamable. Sus vapores son nocivos. Se debe mantener alejado del calor, chispas o llama abierta y en recipientes cerrados, utilizar con ventilación adecuada y evitar el contacto prolongado o repetido con la piel. En caso de fuego se debe utilizar agua, espuma, productos químicos secos o dióxido de carbono.

5.2 El xileno utilizado en este procedimiento es generalmente una mezcla de isómeros y puede contener algo de etilbenceno. Debe cumplir con las siguientes especificaciones:

<table>
<thead>
<tr>
<th>Color</th>
<th>No más de 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de ebullición</td>
<td>137°-144°C</td>
</tr>
<tr>
<td>Residuo después de evaporación</td>
<td>0,002% peso</td>
</tr>
<tr>
<td>Compuesto de azufre (S)</td>
<td>0,003% peso</td>
</tr>
<tr>
<td>Sustancias oscurcidas por H₂SO₄</td>
<td>Pasar prueba de color</td>
</tr>
<tr>
<td>Agua</td>
<td>0,02%</td>
</tr>
<tr>
<td>Metales pesados (como Pb)</td>
<td>0,1 ppm</td>
</tr>
<tr>
<td>Cobre</td>
<td>0,1 ppm</td>
</tr>
<tr>
<td>Hierro</td>
<td>0,1 ppm</td>
</tr>
<tr>
<td>Níquel</td>
<td>0,1 ppm</td>
</tr>
<tr>
<td>Plata</td>
<td>0,1 ppm</td>
</tr>
</tbody>
</table>

6 MUESTREO

El muestreo se deberá realizar de acuerdo a la Norma Venezolana COVENIN 950

7 PREPARACION DE LAS MUESTRAS

7.1 La cantidad de muestra se debe seleccionar en base al contenido de agua esperado, como se indica en la tabla siguiente:

<table>
<thead>
<tr>
<th>Contenido de agua esperado (% en peso o volumen)</th>
<th>Cantidad aproximada de muestra (g o ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,1 - 100,0</td>
<td>5</td>
</tr>
<tr>
<td>25,1 - 50,0</td>
<td>10</td>
</tr>
<tr>
<td>10,1 - 25,0</td>
<td>20</td>
</tr>
<tr>
<td>5,1 - 10,0</td>
<td>50</td>
</tr>
<tr>
<td>1,1 - 5,0</td>
<td>100</td>
</tr>
<tr>
<td>0,5 - 1,0</td>
<td>200</td>
</tr>
<tr>
<td>Menos de 0,5</td>
<td>200</td>
</tr>
</tbody>
</table>
7.2 Si hay alguna duda en cuanto a la uniformidad de la muestra, se deben hacer determinaciones y el promedio de los resultados se reporta como contenido de agua.

8 PROCEDIMIENTO

8.1 REQUISITOS ESPECIALES

La precisión de este método se puede ver afectada por gotas de agua que se adhieran a las superficies del equipo y que no entren en la trampa. Para minimizar el problema, se debe limpiar el equipo por lo menos una vez al día para eliminar las películas de la superficie y los residuos que impiden el libre drenaje del agua, utilizando xileno, acetona u otro solvente apropiado. Se recomiendan limpiezas más frecuentes si la naturaleza de las muestras que se están analizando produce contaminación persistente.

8.2 CALIBRACION

Se debe calibrar la trampa y verificar el montaje, como se indica.

8.2.1 Se verifica la precisión de las marcas de graduación en la trampa añadiendo porciones de 0,05 ml de agua destilada a 20°C con una microbureta, o una micropipeta de apreciación 0,01 ml. Si hay una desviación de más de 0,05 ml entre el volumen de agua agregado y el volumen observado, se repite la calibración.

8.2.2 Se determina el buen funcionamiento del equipo como se indica:

8.2.2.1. Se agregan 400 ml de xileno seco (máximo 0,02% de agua) en el equipo y se procede de acuerdo al punto 8.3. Se completa la destilación y se desecha el contenido de la trampa.

8.2.2.2 Se añade 1,00 ± 0,01 ml de agua destilada con la bureta o micropipeta a 20°C directamente al balón de destilación y se procede de acuerdo al punto 8.3.

8.2.2.3 Se repite el punto 8.2.2.2 agregando 4,50 ± 0,01 ml de agua.

8.2.2.4 El montaje del equipo es satisfactorio solo si las lecturas de la trampa cumplen con las siguientes tolerancias.

<table>
<thead>
<tr>
<th>Capacidad de la trampa a 20°C (ml)</th>
<th>Volumen de agua añadida a 20°C (ml)</th>
<th>Tolerancias (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,00</td>
<td>1,00</td>
<td>± 0,025</td>
</tr>
<tr>
<td>5,00</td>
<td>4,50</td>
<td>± 0,025</td>
</tr>
</tbody>
</table>
8.2.3 Una diferencia mayor de 0,025 ml se debe a fugas de vapor, ebullición demasiado rápida, imprecision en las graduaciones de la trampa, o contaminación de humedad. Estos desperfectos deben eliminarse antes de repetir 8.2.1.

8.3 TECNICA DE ENSAYO

8.3.1 Para determinar el contenido de agua en base a volumen, se miden en un cilindro graduado de 5ml, 10ml, 20ml, 50ml, 100ml o 200 ml, de acuerdo a 7.1. Se tiene cuidado de verter la muestra lentamente en el cilindro graduado para evitar la incorporación de aire, y se ajusta el nivel lo más cerca posible de la graduación apropiada. Cuidadosamente se vierte el contenido del cilindro en el balón de destilación y se enjuaga el cilindro con 200 ml de xileno en cinco porciones de 40 ml, luego se añaden los líquidos de enjuague al balón. Se escurre bien el cilindro para asegurar la transferencia completa de la muestra.

8.3.2 Para determinar el contenido de agua en base a peso, se toma una porción de muestra de acuerdo a 7.1, vertiendo la muestra directamente en el balón de destilación. Si se tiene que usar un recipiente de transferencia (vaso de precipitados o cilindro), se enjuaga con pequeñas porciones de xileno hasta asegurarse que se ha transferido toda la muestra al balón.

8.3.3 En ambos casos, 8.3.1 y 8.3.2 se añade al balón suficiente xileno para hacer que el volumen total sea de 400 ml.

8.3.4 Un agitador magnético es el dispositivo más efectivo para reducir la ebullición violenta. También resultan útiles, aunque menos eficaces, las perlas de vidrio o otro medio para controlar la ebullición.

8.4 El equipo se monta como se indica en la Fig. 1, asegurándose de que todas las conexiones sean herméticas. Se recomienda no engrasar las conexiones de vidrio. Se introduce un tubo de secado que contenga un descascante indicador en el extremo del condensador para impedir la condensación de humedad atmosférica dentro del mismo. Se hace circular agua, a una temperatura entre 20°C y 25°C, a través de la camisa del condensador.

8.5 Se calienta el balón. El tipo de crudo que se está evaluando puede alterar significativamente las características de ebullición de la mezcla crudo-solvente. La temperatura debe aumentarse lentamente durante las etapas iniciales de la destilación (aproximadamente 1/2 a 1 hora) para impedir la ebullición violenta y la posible pérdida de agua del sistema. Para facilitar el lavado del condensador, el condensador se debe mantener lo más cerca posible de la entrada del condensador. Después del calentamiento inicial se regula la tasa de ebullición para que el condensado no suba más de 1/4. El destilado debe descargar en la trampa a una velocidad de aproximadamente 2 a 5 gotas por segundo. Se continúa la destilación hasta que no quede agua visible en ninguna parte del aparato, excepto en la trampa, y el
volumen de agua en esta permanezca constante durante por lo menos cinco minutos. Si hay una acumulación persistente de gotas de agua en el tubo interno del condensador, se lava con xileno. (Se recomienda un tubo de lavado de chorro como el de la Fig. 2 o un dispositivo equivalente). La adición al xileno de un demulsificante soluble en petróleo, a una concentración de 1000 ppm, ayuda a separar las gotas de agua que quedan adheridas. Después de lavar se vuelve a destilar durante por lo menos 5 minutos (el calor debe apagarse 15 minutos antes del lavado para impedir ebullición violenta). Después del lavado se aplica el calor lentamente para impedir la ebullición fuerte. Se repite este procedimiento hasta que no quede agua visible en el condensador y el volumen de agua de la trampa permanezca constante durante por lo menos 5 minutos. Si este procedimiento no desaloja el agua, se utiliza el raspador de teflón o el pico, y se transfiere a la capa de agua. Se lee el volumen de agua en la trampa. La trampa tiene graduaciones de 0,05 ml pero el volumen se calcula con aproximación a 0,025 ml.

9 EXPRESIÓN DE LOS RESULTADOS

El agua de la muestra se calcula de la manera siguiente:

\[
\text{% en volumen} = \frac{(A - B)}{C} \times 100
\]

\[
\text{% en volumen} = \frac{(A - B)}{(M/D)} \times 100
\]

\[
\text{% en peso} = \frac{(A - B) \times d}{M} \times 100
\]

donde:

A = mililitros de agua en la trampa
B = mililitros de blanco de solvente
C = mililitros de muestra de prueba
M = gramos de muestra de prueba, y
D = densidad de muestra, g/ml
d = densidad del agua, g/ml

NOTA: Los materiales volátiles solubles en agua, de estar presentes, afectan los resultados.

10 INFORME

El informe deberá contener como mínimo la siguiente información:

10.1 Fecha de realización del ensayo
10.2 Nombre del analista
10.3 Realizado de acuerdo a la Norma Venezolana COVENIN 2582
10.4 Identificación de la muestra
10.5 Resultados parciales y/o finales

1013
11 PRECISION DEL METODO

Para juzgar la aceptabilidad de los resultados se deben emplear los siguientes criterios:

11.1 REPETIBILIDAD. La diferencia entre resultados sucesivos obtenidos por el mismo operador con el mismo equipo bajo condiciones de operación constante y con material de prueba idéntico podría exceder las siguientes cifras sólo en un caso de cada veinte.

De 0,0% a 0,1% de agua, ver Fig. 3.
Más de 0,1% de agua, la repetibilidad es constante a 0,08

11.2 REPRODUCIBILIDAD. La diferencia entre dos resultados obtenidos por diferentes operadores trabajando en distintos laboratorios con material de prueba idéntico podría exceder las siguientes cifras sólo en un caso de cada veinte:

De 0,0% a 0,1% de agua, ver Fig. 3
Más de 0,1% de agua, la reproducibilidad es constante a 0,11

12 TIEMPO DEL ANALISIS

12.1 El tiempo requerido para la realización de un análisis es de 2 horas.

12.2 Para la realización de este ensayo se requiere 1 hora-hombre.

BIBLIOGRAFIA

FIG. 1 EQUIPO DE DESTILACION
FIG. 2 - PICO, RASPADOR Y TUBO DE CHORRO PARA EQUIPO DE DESTILACIÓN
FIG. 3 - SEDIMENTOS BASICOS Y PRECISION DE AGUA
ANEXO

A1. PRECISION Y EXACTITUD DE LOS MÉTODOS PARA DETERMINAR EL CONTENIDO DE AGUA EN CRUDOS

A1.1 RESUMEN

A1.1.1 Se ha demostrado que el método de destilación, en la forma en que se practica, es más preciso que el método centrífugo. La corrección promedio para el método de destilación es de aproximadamente 0,06, mientras que la corrección centrífuga es de 0,10. Sin embargo, esta corrección no es constante ni se correlacionan bien con la concentración medida.

A1.1.2 Hay un leve mejoramiento en la precisión del método de destilación con respecto a la Norma Venezolana COVENIN 427; 0,08 en comparación con 0,1 en cuanto a la repetibilidad, y 0,11 en comparación con 0,2 en la reproducibilidad. Estas cifras son aplicables a un contenido de agua de 0,1% a 1%.

A1.1.3 La precisión del método de destilación es mejor que la del método de centrifugación, según la Norma Venezolana COVENIN 422, cuya repetibilidad es 0,12 y la reproducibilidad 0,28.