GRASAS LUBRICANTES.
DETERMINACION DE LAS CARACTERISTICAS
DEL RENDIMIENTO EN RODAMIENTOS DE
BOLA A TEMPERATURAS ELEVADAS

ISBN: 980-06-0677-7
CDU: 667.7
TRAMITE

COMITE TECNICO CT4: PETROLEO, GAS Y SUS DERIVADOS
PRESEIDENTE: JESUS GONZALEZ ESCOBAR
VICEPRESIDENTE: GILBERTO ARAUJO
SECRETARIA: MARIELA VILORIA

SUBCOMITE TECNICO CT4/SC5: METODOS DE ENSAYO
COORDINADORA: MARIELA VILORIA

GRUPO DE TRABAJO: SC5/GT2: ACEITES Y GRASAS
COORDINADORA: MARIELA VILORIA

PARTICIPANTES

ENTIDAD

CORPOVEN, S.A.

INTEVEP, S.A.

LAGOVEN, S.A.

MARAVEN, S.A.

MINISTERIO DE ENERGIA Y MINAS

PETROLEOS DE VENEZUELA, S.A. (PDVSA)

REPRESENTANTE

 Fernando Manzo

 Yasmina Mujica

 Jose L. Rosales

 Nelson Morales

 Jose Castillo

 Maria de Guerrero

 Juanita Perez

 Belkis Lopez

 Rogelio Cover

 Rita Medina

 Francisco Peña

 Gustavo Jimenez

 Manuel Castillo

 Jesus Gonzalez E.

 Hernani Meinhard

ENVIO A DISCUSION PUBLICA

FECHA: 26-06-84
DURACION: 45 DIAS
FECHA DE APROBACION POR EL COMITE: 06-11-90
FECHA DE APROBACION POR LA COVENIN: 05-12-90
NORMA VENEZOLANA COVENIN
GRASAS LUBRICANTES 2740-90
DETERMINACION DE LAS CARACTERISTICAS DEL RENDIMIENTO EN RODAMIENTOS DE BOLA A TEMPERATURAS ELEVADAS

1 NORMAS COVENIN A CONSULTAR

COVENIN 1369-88 Asignación y clasificación de los aceros según su composición química.

2 OBJETO Y CAMPO DE APLICACION

Esta Norma Venezolana establece el método de ensayo para la determinación de las características del rendimiento de grasas lubricantes en rodamientos de bola que operan bajo condiciones de cargas livianas, a altas velocidades y temperaturas elevadas.

3 RESUMEN DEL METODO

Se hace girar a 10000 rpm, bajo carga liviana un rodamiento de bola, tamaño SAE N° 204, lubricado con grasa a una temperatura especificada. Se continúa la rotación hasta que se produzca la falla o hasta completar un número especificado de horas de prueba.

4 EQUIPOS

4.1 EJE DE PRUEBA (ver Figs. 1, 2, 3 y 4).

4.1.1 Un eje que pueda operar a velocidades de 10000 rpm y a temperaturas de hasta 371°C (700°F). La dimensión del asiento del rodamiento de prueba debe ser de 19,99 mm a 20,00 mm. En el caso de ejes que tengan en la misma caja el rodamiento de prueba y el de soporte (Tipo CRC ver Figs. 1, 2 y 4) (vease NOTA 1) la construcción interna debe ser tal que el rodamiento de soporte exterior, o ambos tengan libertad de movimiento axial dentro de la caja. En los diseños en que ambos rodamientos tengan libertad de movimiento axial, el eje también debe tener una libertad de movimiento de 0,508 mm a 0,762 mm (0,020 pulg a 0,030 pulg). Las dimensiones del asiento del rodamiento exterior deben ser iguales a las del rodamiento de prueba.

4.1.2 El diseño de la unidad de prueba (ver Figs. 1 y 2) debe ser tal que un resorte tipo dedo (resorte Z) produzca una carga de empuje de 22 N a 67 N (5 lbf a 15 lbf) sobre el rodamiento de soporte exterior libre de movimiento.
4.2 CAJAS DE RODAMIENTOS

4.2.1 Para ejes de tipo "CRC". El diámetro de la caja de rodamientos será de 47,005 mm a 47,021 mm para permitir un montaje adecuado. El rodamiento de prueba debe estar equipado con espaciadores a nivel o con protectores para que la grasa quede confinada dentro del mismo. Los espaciadores o protectores deben tener un espacio libre entre el diámetro interno y el eje que sea de 0,127 mm a 0,178 mm (0,005 pulg a 0,007 pulg) en cada lado.

4.2.2 Para rodamientos de Tipo Naval (rodamiento de prueba montado fuera de la caja del eje). La caja de los rodamientos debe estar fabricada de un material similar al del rodamiento de prueba, y debe ser posible acondicionarla a una temperatura de hasta 371°C (700°F). El diámetro interno debe ser de 47,005 mm a 47,021 mm. La tapa de la caja debe estar ajustada a nivel para que la grasa quede confinada en el rodamiento. Es necesario introducir en la caja uno o dos termopares pequeños que ejerzan una ligera presión sobre el rodamiento de prueba y que estén en contacto contínuo con la ranura guía externa del rodamiento de prueba. La caja debe permitir la adaptación de un soporte colgante y pesas adicionales, a fin de que se pueda aplicar carga radial al rodamiento de prueba. Al anillo-guía exterior del rodamiento se le aplica una carga de empuje de 22 ± 2 N (5 ± 0,55 lbf) por medio de un resorte helicoidal calibrado a temperatura ambiente.

4.3 MOTOR Y EQUIPO DE ACCIONAMIENTO

Debe constar de un montaje de correa acoplada a un motor eléctrico que permita girar el eje principal a una velocidad de 10000 ± 200 rpm, con una tensión constante en la polea del eje (67 N).

4.4 HORMO

Desmontable, capaz de alcanzar una temperatura máxima de prueba de 371°C (700°F) en 1 1/2 horas.

4.5 EQUIPO DE CONTROL

4.5.1 La temperatura del diámetro externo del rodamiento de prueba se debe mantener dentro de un intervalo de ± 3°C de la temperatura especificada de prueba. El equipo de control de temperatura debe ser capaz de mantener la temperatura en la guía de rodamiento exterior del rodamiento de prueba dentro de los límites especificados por el control de la temperatura del horno. La temperatura del horno debe estar controlada por un termopar colocado en la cavidad del mismo.

4.5.2 Se debe contar con equipos adecuados tales como un relé ajustable y un dispositivo de sobrecarga para apagar los calentadores y el motor, así como con otros equipos (cronómetro, registro, u otros).
5.1 RODAMIENTO DE PRUEBA SAE N° 204, fabricado en acero resistente al cal-
lor, adecuado para temperaturas de hasta 371°C (700°F). El rodamiento debe
estar fabricado con calidad ABEC-3, con espaicamiento radial que oscile de
(0,025 a 0,031) mm. Debe tener un espaciador de bolas fabricado con mate-
rrial adecuado para soportar temperaturas de hasta 371°C (700°F). Los roda-
mientos de apoyo de los ejes tipo "CRC" deben ser idénticos a los rodamien-
tos de prueba.

NOTA 1: Los rodamientos fabricados con acero 18-4-1 de alta velocidad o
acero de herramientas M-10, con espaciadores de bolas fabricados de cobre
berilio plateado termotratado son satisfactorios. También se han enconstra-
dado satisfactorios para pruebas a temperaturas por debajo de 149°C (300°F)
los rodamientos fabricados en acero COVENIN 52100 hechas en acero COVENIN
1010. (Ver Norma Venezolana COVENIN 1369).

5.2 n-HÉPTANO. Ver Anexo.

5.3 SOLVENTE PARA GRASAS. Ver Anexo.

6 PROCEDIMIENTO

6.1 CONDICIONES DEL ENSAYO

6.1.1 Temperatura. Como se especifica hasta 371°C (700°F).

6.1.2 Velocidad. 10000 ± 200 rpm.

6.1.3 Ciclo de Prueba:

6.1.3.1 21,5 horas funcionando a temperaturas de 149°C (300°F) y menores.
2,5 horas de parada sin aplicación de calor.

6.1.3.2 20,0 horas funcionando a temperaturas mayores a 149°C (300°F). Un
período de parada de 4,0 horas sin aplicación de calor.

6.2 PREPARACIÓN DEL EQUIPO

6.2.1 Justo antes de aplicar la lubricación para la prueba, se limpia el
rodamiento haciéndolo girar en solvente caliente y a continuación se hacen
dos lavados sucesivos con n-heptano y se seca por evaporación en un horno a
71°C (160°F). Luego se deja enfriar a temperatura ambiente.

6.2.2 Se llena el rodamiento manualmente hasta que llegue a contener una
cantidad de grasa pesada equivalente a 3,2 ± 0,1 cm³. La grasa también
se puede medir por volumen, y se puede aplicar al rodamiento con una jeringa.
La grasa se extiende uniformemente en ambos lados de los rodamientos
utilizando una espátula de hoja estrecha, y asegurándose que no se salga de
la superficie de las guías de rodadura. En el caso de los ejes tipo "CRC"
el rodamiento de soporte debe quedar totalmente lleno.
6.2.3 Se montan el rodamiento de prueba, el de soporte y el resorte Z (ver Figs. 1 y 2) sobre el eje, y se fijan los termopares de manera que estén en contacto con la marca exterior del rodamiento de prueba (ejes tipo "CRC"). Para pruebas por encima de los 232°C (450°F) se sustituye en cada prueba el resorte Z. En el caso de ejes "tipo naval" se introduce el rodamiento de prueba en la caja y se coloca en el eje aplicando una ligera fuerza sobre la guía de rodadura interior. Se pone en su lugar la placa de cubierta, se fijan en su sitio los termopares y se aplican las cargas radiales y de empuje.

6.3 TECNICAS DE ENSAYO

6.3.1 Se hace girar el rodamiento a mano, 100 revoluciones en cada dirección, a una velocidad que no exceda las 200 rpm. Se encienden simultáneamente el motor y el calentador y se ajusta el control de temperatura para que en 1,5 h se alcance la temperatura de prueba. Después de dos horas de operación se mide la temperatura de la otra guía de rodadura del rodamiento de prueba. Se ajusta el controlador de modo que la guía de rodadura exterior del rodamiento de prueba esté a la temperatura de prueba para la grasa. El tiempo de funcionamiento, la temperatura de control y la temperatura de la guía de rodadura exterior del rodamiento, se debe ajustar por lo menos cada 24 horas. De no usarse controles automáticos se debe hacer una parada de 72 horas (sin calor aplicado) el fin de semana. Con los ejes "tipo naval" la puerta del horno debe permanecer cerrada durante los períodos de parada.

NOTA 2. Una vez que se ha establecido una estabilidad térmica satisfactoria con el rodamiento de prueba, no es necesario hacer ajustes ulteriores a mano. Sin embargo, tal vez se requiera hacer pequeños ajustes de acuerdo al cambio de condiciones del voltaje, la temperatura ambiente u otra condición.

5.3.2 Se continúa la prueba hasta que se presente la falla o hasta completar un número especificado de horas (ver punto 7.2).

7 EXPRESION DE RESULTADOS

7.1 El rendimiento de la grasa lubricante se expresa en horas de funcionamiento.

7.2 Se considera que la grasa lubricante ha fallado cuando se presenta alguna de las siguientes condiciones:

7.2.1 La potencia de entrada del eje aumenta un 300% por encima de la condición de estado estacionario a la temperatura de prueba.

7.2.2 La temperatura en el rodamiento de prueba aumenta 15°C (27°F) por encima de la temperatura de prueba en cualquier momento del ciclo. No se debe tomar en cuenta cualquier aumento de temperatura, que tenga lugar en los primeros treinta minutos después de haber llegado a la temperatura de prueba, en el encendido diario.
7.2.3 Cuando hay carga del rodamiento de prueba o deslizamiento de la correa al comenzar o durante el ciclo de prueba.

8 INFORME

El informe deberá contener como mínimo la siguiente información:

8.1 Fecha de realización del ensayo.
8.2 Nombre del analista
8.3 Realizado de acuerdo a la Norma Venezolana COVENIN 2740
8.4 Identificación de la muestra
8.5 Resultados parciales y/o finales. Se debe registrar:
 8.5.1 Tipo de rodamiento
 8.5.2 Temperatura de la prueba y del rodamiento
 8.5.3 Número de horas
 8.5.4 Tipo de falla

9 PRECISION

9.1 La precisión del método no ha sido determinada ya que no existen suficientes valores experimentales.

9.2 El duplicado de pruebas es esencial cuando se utiliza este procedimiento, ya que se puede esperar una dispersión apreciable de los resultados de la prueba.

10 TIEMPO DE ANALISIS

10.1 El tiempo requerido para la realización de un análisis está definido por la falla de la muestra o las especificaciones de la prueba.

10.2 Las horas-hombre requeridas para la realización de un análisis son de 8 horas-hombre.

BIBLIOGRAFIA

ANEXO

PRECAUCIONES

A1. n-HEPTANO. ADVERTENCIA. Inflamable, dañino si se inhala. Se debe mantener alejado de fuentes de calor, chispas y llama abierta y con el recipiente cerrado. Utilizar con ventilación adecuada. Se debe evitar la inhalación prolongada de vapores o rocíos y el contacto prolongado o repetido con la piel.

A2. SOLVENTE STODDARD. PRECAUCION. Inflamable. Vapores dañinos. Se debe mantener alejado de fuentes de calor, chispas o llama abierta y almacénar en un recipiente cerrado. Utilizar con ventilación adecuada y evitar la inhalación de vapores o rocíos y el contacto prolongado o repetido con la piel.
FIG. 1 EJE DE PRUEBA (AMBOS FLOTANDO)
FIG. 2 EJE DE PRUEBA (CON RODAMIENTO DE PRUEBA)

FIG. 3 EJE DE PRUEBA (CON CARGA RADIAL)
FIG. 4 EJE DE PRUEBA CON CARGA DE EMPUJE
COMISIÓN VENEZOLANA DE NORMAS INDUSTRIALES
MINISTERIO DE FOMENTO
Av. Andrés Bello Edif. Torre Fondo Común Piso 11
CARACAS