ESFIGMOMANOMETROS.
COMITE TECNICO CT14: METROLOGIA
PRESIDENTE: ING. HERNAN REYES
VICEPRESIDENTES: ING. ROBERTO CARLETITI
SECRETARIO: LIC. ORLANDO TORTORELO
SUBCOMITE TECNICO CT14/SC3: FLUIDOS
COORDINADOR: LIC. ORLANDO TORTOLELO

FECHA DE APROBACION POR EL COMITE: 10-08-92
FECHA DE APROBACION POR LA GOVERNIN: 09-12-92
1 NORMAS COVENIN A CONSULTAR

Esta norma es completa.

2 OBJETO Y CAMPO DE APLICACIÓN

Esta Norma Venezolana establece los requisitos mínimos y los métodos de verificación aplicables a los esfigmomanómetros (no electrónicos) de los tipos, manómetros de mercurio y manómetros de elemento receptor elástico de medida.

3 DEFINICIONES

3.1 ESFIGMOMANÓMETRO

Manómetro que se utiliza para medir la presión arterial en humanos.

3.1.1 Mercurial

Es el que efectúa el registro tensiográfico por medio de una columna de mercurio.

3.1.2 Elemento receptor elástico

Es el que se basa en la deformación elástica de un elemento sensible por acción de la presión que se mide.

4 MATERIAL Y BIBLIOGRAFÍA

4.1 MATERIAL

4.1.1 Manómetros de acción

4.1.1.1 Los recipientes, los tubos y los elementos de ensamblaje en contacto con el mercurio deben ser de materiales inérticos a este elemento.

4.1.1.2 Los tubos en los cuales tiene lugar la acción del mercurio y a lo largo de los cuales se hacen las lecturas, deben ser de un material bien transparente, que permita una observación precisa de los meniscos del mercurio.

4.1.2 Manómetros de elemento receptor elástico

4.1.2.1 Los elementos receptores deben ser de un material conveniente para ese utilización particular (por ejemplo de cobre o en acero).

Deben haber sido sometidos a un envejecimiento previo suficiente.
4.2. DISEÑO

4.2.1 MANOMETROS DE ERCURIO

4.2.1.1 Los manómetros de mercurio pueden ser de dos ramas, o formados por un depósito y una sola rama.

4.2.1.1.1 El diámetro interior de las ramas, no deben ser inferior a 4 mm.

4.2.1.1.2 Las secciones de los elementos que contienen el mercurio deben ser tal que la escala del instrumento sea lineal.

4.2.1.1.3 En los manómetros de depósito, cuando este no es de una sola pieza, debe asegurarse la invariabilidad del ensamblaje de sus diversos elementos en sus respectivas posiciones.

4.2.2 MANOMETROS DE ELEMENTO RECEPTOR ELÁSTICO

4.2.2.1 Los manómetros de elemento receptor elástico pueden ser de resorte tubular, de resorte espiral, a membrana elástica, a capsula elástica, de cuerpo hueco elástico, otros.

4.2.2.2 El secambio medidor debe ser protegido de las intervenciones de personas no autorizadas, por una envoltura que pueda ser sellada y asegurar al mismo tiempo la hermeticidad al polvo. Esta envoltura no debe impedir la lectura de las indicaciones; si para tal efecto, lleva una ventana transparente y que esa ventana sea innválid, ella debe ser fijada de tal manera que su desmontaje por el exterior de la envoltura sea imposible sin deterioro.

5 REVISIÓN

5.1 INSPECCIÓN VISUAL

5.1.1 El límite superior de medición no debe ser menor de 40,0 kPa (300 mm Hg), el límite inferior de medición no debe ser mayor que 7,0 kPa (20 mm Hg), y el valor de división no mayor que 0,5 kPa (3,7 mm Hg).

5.1.2 La escala del manómetro debe estar graduada en unidades de presión expresadas en el Sistema Internacional (SI) o en unidades aseptizadas.

5.1.3 La escala debe ser uniforme, con trazos legibles, cada quinto trazo debe estar prolongado y cada décimo trazo debe tener su valor de indicación.

5.1.4 La escala debe tener una marca para indicar la posición cero, se permite un dispositivo para la corrección de la posición cero del indicador del manómetro.

5.1.5 El cristal que protege el dispositivo indicador debe ser transparente y no tener defectos que influyan en su resistencia, impiden realizar la lectura o que afecten su aspecto exterior.

5.1.6 Los accesorios (cámara de gato del brazalete, para tubos de unión) del estigmomanómetro deben poseser propiedades elásticas, que garanticen una constante manipulación y resistencia durante cargas frecuentes.
5.2 PARÁMETROS METROLOGÍOS

5.2.1 Indicación de cero (Visual)
Los esfenagonmanómetros deben presentar una desviación de la indicación en cero mayor a la mitad del error absoluto máximo permitido y en los de deformación elástica la agua indicadora se encontrará dentro de los límites de la marca que posee en la esfera para indicar la posición cero.
Los esfenagonmanómetros estarán sometidos suavemente a la presión atmosférica.

5.2.2 Precisión
Los esfenagonmanómetros ensayados según el punto 6.1 de la presente norma no deberán presentar una desviación de la indicación en cada punto que se verifique, mayor al error absoluto máx. permitido, señalado en la tabla 1.

5.2.3 Hermeticidad
Los esfenagonmanómetros ensayados según el punto 6.2 de la presente norma no deberán presentar fugas de aire.

5.2.4 Sobre carga
Los esfenagonmanómetros ensayados según el punto 6.3 de la presente norma, no deberán presentar fugas de aire, ni desviaciones de la indicación en cada punto que se verifique mayor al error absoluto máximo permitido, señalado en la tabla 1.

6 ENSAYO

6.1 PRECISION

6.1.1 Equipo

6.1.1.1 Manómetro patrón de pistón y pesas con intervalo de medición desde no más de 750 kPa hasta no menos de 400 kPa con error absoluto máximo no mayor que 0,1 kPa.

6.1.1.2 Cronómetro con error medio de las indicaciones de 0,05% y error absoluto máximo de 0,6 s.

6.1.2 Condiciones ambientales

6.1.2.1 La temperatura del aire ambiental del local donde se realice la verificación será de (20 ± 10) °C, con una variación que no exceda de 2% durante la verificación.

6.1.2.2 La humedad relativa del aire ambiental en el lugar donde se realice la verificación será no mayor que 90%.

6.1.3 Preparación de la muestra

6.1.3.1 El esfenagonmanómetro a verificar deberá situarse en su posición normal de trabajo.

6.1.3.2 El esfenagonmanómetro tiene que permanecer en las condiciones ambientales indicadas en el punto 6.1.2 por lo menos 2 horas antes de iniciar el ensayo.

3
8.1.4 Verificación

8.1.4.1 Se realizan mediciones en no menos de 5 puntos (valores de presión) uniformemente repartidos en todo el intervalo de medición, de los cuales al último será el correspondiente al límite superior de medición del esfigiomanómetro, en este punto se mantendrá dicha presión durante un tiempo no menor de 5 s.

8.1.4.2 Se realizan en cada punto dos lecturas de las indicaciones, la primera en ascenso y la segunda en descenso.

8.1.4.3 Se determina la variación de las indicaciones por la diferencia entre las indicaciones en ascenso y en descenso de la presión para cada punto que se verifica. Ellos no superarán de los valores establecidos en la tabla 1.

8.1.4.4 Se verifica el cumplimiento del requisito señalado en el punto 5.2.2. de la presente norma.

8.1.5 Informe

El informe deberá contener como mínimo la siguiente información:

8.1.5.1 Ensayo realizado según la Norma Venezolana COVENIN 1413-909.

8.1.5.2 Identificación del esfigiomanómetro ensayado.

8.1.5.3 Identificación del equipo de ensayo.

8.1.5.4 Identificación del personal técnico que realizó el ensayo y fecha de realización del mismo.

8.1.5.5 Resultados.

8.1.5.6 Comentarios.

8.2 HERRAMIENTAS

8.2.1 Equipo

8.2.1.1 Dispositivo para el suministro de aire hasta no menos de 40 kPa.

8.2.2 Condiciones ambientales

8.2.2.1 Igual a lo señalado en el punto 8.1.2

8.2.3 Preparación de la prueba

8.2.3.1 Igual a lo señalado en el punto 8.1.3

8.2.4 Verificación

8.2.4.1 Se suministra, con la presión en el sistema neumático del esfigiomantómetro, y la válvula cerrada una presión entre 0.8 a 1.0 del límite superior de medición y se mantiene así por un minuto; se toma la lectura de la presión.
6.2.4.2 Se comprueba que la presión se mantenga constante, es decir que no disminuya por fuga de aire del sistema neumático del esfigmomanómetro a la atmósfera; si la fuga no es causada por el esfigmomanómetro, sino por defectos en las uniones, tuberías u otros, ella debe ser corregida.

6.3 Informe

Igual a lo señalado en el punto 6.1.5

6.3.1 Equipe

6.3.1.1 Dispositivo para el suministro de presión de aire hasta no menos de 50 kPa.

6.3.2 Condiciones ambientales

Igual a lo señalado en el punto 6.1.2

6.3.3 Preparación de la muestra

Igual a lo señalado en el punto 6.1.3

6.3.4 Verificación

6.3.4.1 Se mantiene el esfigmomanómetro bajo una presión de 50 kPa (375 mm Hg) durante 15 min.

6.3.4.2 Se disminuye la presión hasta cero y se mantiene el esfigmomanómetro sin presión durante 1h.

6.3.4.3 Se realizan pruebas de precisión y hermeticidad, señaladas en los puntos 6.1 y 6.2

6.3.4.4 Se verifica el cumplimiento del punto 5.2.4

6.3.5 Informe

Igual a lo señalado en el punto 6.1.5

7 MARKACIÓN Y EMBALAJE

7.1 MARKACIÓN

El esfigmomanómetro debe llevar como mínimo las siguientes indicaciones:

7.1.1 Hecho en Venezuela o el país de origen.

7.1.2 Unidad de medida.

7.1.3 Marca o el nombre del fabricante.
7.1.4 Número de fabricación.

7.1.5 La marca de aprobación de modelo.

7.2 EMBALAJE

7.2.1 Los esfigmomanómetros deberán ser embalados en estuches apropiados que garanticen la colocación libre y distribución de todos sus componentes, así como su manipulación y transporte.

BIBLIOGRAFÍA

NC 00-07-09 ESFIGMOMANÓMETROS. Métodos y medios de Verificación. La Habana Cuba.

RECOMENDACION INTERNACIONAL N. 16- Manómetros de los instrumentos de medida de la tensión arterial. ORGANIZACION INTERNACIONAL DE METRÓLOGIA LEGAL. OIML.

<table>
<thead>
<tr>
<th>TABLA I</th>
<th>ERRORES ABSOLUTOS MÁXIMOS PERMITIBLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Absoluto Máximo Permitible</td>
<td></td>
</tr>
<tr>
<td>Princípio del funcionamiento</td>
<td></td>
</tr>
<tr>
<td>de mercurio</td>
<td>0,3</td>
</tr>
<tr>
<td>de deformación elástica</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Acabado de producir En uso o aislado

Valor en la fábrica | 0,4 |
Valor en el laboratorio | 0,6 |

Favor de consultar el documento original para detalles adicionales.