NORMA VENEZOLANA

COVENIN 332-80

TUBOS DE CONCRETO ARMADO PARA USO EN SISTEMAS DE ALCANTARILLADO SIN PRESION.
PROLOGO

La presente Norma abarca el mismo ámbito técnico de la Norma NORVEN 332 titulada: "Tubos de concreto armado - para uso en sistemas de alcantarillado sin presión", a la cual sustituye totalmente, ésta a su vez se basó en la Norma ASTM C14-75.
TRAMITE:

COMITE: CT3 MATERIALES Y COMPONENTES DE LA CONSTRUCCION

PRESIDENTE: Rafael Salas Jiménez
VICE-PRESIDENTE: Maritza Silva Campos
SECRETARIO: Roselía Cordero de González

SUB-COMITE: SC1 CONCRETO

COORDINADOR: Araceli A. de Tomaselli

PARTICIPANTES

CONCRETERA LOCK JOINT CONSOLIDADA
Carlos Acosta Sierra
Carlos Abdala

PRE-MEX, S.A.
Matías Santana

COLEGIO DE INGENIEROS DE VENEZUELA
Eduardo Nieto Gil

CONCRETERA CENTRO OCCIDENTAL, C.A.
Helímenas Añez C.

CONCRETERA CARACAS
Antonio Colarusso
Elio Pegoraro

INOS
Marcos Cabrera

M.S.A.S.
Gladys Carvajal

DISCUSION PUBLICA: Fecha de Envío: 20-08-80
Duración: 45 días
FECHA DE APROBACION POR EL COMITE: 18-11-80
FECHA DE APROBACION POR LA COVENIN: 09-12-80
NORMA VENEZOLANA
TUBOS DE CONCRETO ARMADO PARA
USO EN SISTEMAS DE ALCANTARRILLADO SIN PRESIÓN

1 NORMAS COVENIN A CONSULTAR

COVENIN 505-77 Alambre de acero para concreto armado
COVENIN 1022-78 Malla de alambre de acero soldado para concreto armado.
COVENIN 316-80 Barras de acero para uso en concreto armado.
COVENIN 330-80 Fabricación de tubos de concreto armado y sin armazón para uso en sistemas de alcantarillado sin presión.
COVENIN 331-80 Muestreo e inspección de tubos de concreto armado y sin armazón para uso en sistema de alcantarillado sin presión.
COVENIN 334-80 Tubos de concreto. Ensayo de Tres Filos.
COVENIN 335-80 Tubos de concreto. Ensayo de Absorción.
COVENIN 336-80 Tubos de concreto. Ensayo de Hidrostática.
COVENIN 3:1-021 Juntas para tuberías de concreto en sistemas de alcantarillado, utilizando empacaduras de goma.

2 OBJETO
Esta Norma establece las características mínimas que deben cumplir los tubos de concreto armado para su uso en sistemas de alcantarillado sin presión.

3 DEFINICIONES

3.1 SISTEMA DE ALCANTARRILLADO
Es el sistema que sirve para captar, conducir y disponer las aguas servidas (cloacas) y pluviales (crenajes de agua de lluvia).

3.2 TUBERÍA
Es el conjunto formado por el tubo y los accesorios.
3.3 TUBO DE CONCRETO ARMADO
Es un cilindro hueco elaborado de concreto con sección uniforme en toda su longitud exceptuando la junta, con la inclusión de un refuerzo interior de acero. (Ver fig. 1)

3.4 DIÁMETRO NOMINAL
Es el diámetro interno del tubo, sin tomar en cuenta las tolerancias.

3.5 TOLERANCIAS
Son las variaciones permisibles en el peso y en las dimensiones del tubo.

3.6 LONGITUD REAL
Es la longitud medida entre los extremos del tubo.

3.7 LONGITUD NOMINAL
Es la longitud interna, medida desde el extremo del tubo tomando en cuenta la superficie plana, hasta el aumento de diámetro del acople.

3.8 FILTRACIONES
Es el traspaso de un líquido a través de las paredes del tubo, que fluye continuamente.

4 CLASIFICACION
Los tubos se clasifican en clase # 4, 5, 6 y 7 de acuerdo a sus dimensiones, resistencia y tolerancias tal como aparecen detalladas en la Tabla 1 y 2.

5 MATERIALES, DISEÑO Y FABRICACIÓN
El material a utilizar en la fabricación de los tubos consiste en concreto formado por cemento, agregados minerales y aditivos, de acuerdo a lo especificado en la Norma COVENIN 330, además de acero para refuerzo, para los casos de tubos de concreto armado.

5.1 ACERO PARA REFUERZO
El acero utilizado en la armadura debe cumplir con lo especificado en las Normas COVENIN 505, COVENIN 1022 y COVENIN 316.
5.1.1 **Cantidad de acero.** Los tubos llevarán una o dos armaduras de refuerzo circunferencial cuyas secciones se indican en la Tabla 2.

5.1.2 **Variaciones.**

5.1.2.1 En los tubos de 800 mm a 1200 mm inclusive, pueden reemplazar ambas armaduras por una sola armadura elíptica de sección igual a los 2/3 del total de la armadura original.

5.1.2.2 En tubos mayores de 1200 mm pueden reducirse ambas armaduras de refuerzo hasta la mitad de su sección siempre y cuando por medio de una malla elíptica o solapadura de las mismas, o refuerzos extra, se completen las secciones especificadas en la Tabla 2, en las zonas de tracción del tubo cuando éste se encuentre en posición de trabajo. Cada una de estas zonas abarca una longitud de la respectiva armadura de refuerzo. (Ver Fig. 2)

5.1.3 **Armaduras.** Con excepción de los casos indicados en 5.1.2.2 cada armadura de refuerzo circunferencial puede estar construida por dos mallas adosadas y solidariamente atadas de manera de formar una única jaula rígida, de tal forma que el total de la sección de acero sea igual a lo indicado en la Tabla 2.

5.1.4 **Longitudinales.** Los alambres longitudinales de las armaduras de refuerzo deben tener suficiente rigidez para mantener en su correcta posición la armadura circular durante el proceso de fabricación (NOTA 1).

NOTA 1: En caso de que los alambres longitudinales cumplan primordialmente una función de anclaje, deben estar soldados a la armadura circular.

5.1.5 **Separadores.** Se pueden usar para mantener las armaduras en su correcta posición dentro del tubo.

5.1.6 **Empates.**

5.1.6.1 Para empates atados, la longitud del empate no debe ser menor de 40 veces el diámetro del alambre circunferencial y debe incluir por lo menos un alambre longitudinal.

5.1.6.2 Para empates soldados, la solapadura no debe ser menor de 50 mm.
5.1.6.3 Cada refuerzo circunferencial será soldado y cada unión debe resistir un esfuerzo mínimo de tracción de 50% de la resistencia del alambre.

5.2 RECUERDOS

5.2.1 Recubrimiento y tolerancia para tubos armados con una armadura de refuerzo circunferencial. La armadura se coloca a una distancia entre 35% y 50% del espesor del tubo, medida desde la cara interior.

5.2.2 Recubrimiento y tolerancia para tubos armados con dos armaduras de refuerzo circunferencial o con armadura elíptica. En tubos hasta 750 mm inclusive, se utiliza un recubrimiento de 20 mm; entre 800 mm y 1200 mm inclusive, se utiliza un recubrimiento de 25 mm; para tubos de mayor diámetro, el recubrimiento será de 30 mm. La tolerancia en la colocación de la armadura para tubos hasta 1200 mm inclusive, será de ± 5 mm; para tubos mayores, la tolerancia será ± 10 mm.

5.3 JUNTAS

5.3.1 En la colocación del tubo se utiliza una unión convencional a base de mortero de concreto, o una a base de empacadora de goma.

5.3.2 Cuando el proceso de fabricación lo permita debe armarse uno de los acoples del tubo con una armadura de sección igual a la de una línea de refuerzo circunferencial del tubo.

6 REQUISITOS

6.1 RESISTENCIA DEL CONCRETO

6.1.1 Ensayo de cilindros de concreto. Las totalidad de las muestras deben cumplir con la Norma COVENIN 331.

6.1.2 Ensayo de probetas de concreto extraídas del cuerpo del tubo. Las probetas deben cumplir con la Norma COVENIN 331.

6.1.3 La resistencia del concreto utilizado, en cada clase viene indicada en la Table 3.

6.2 Apariencia y acabado.

6.2.1 La superficie interior de los tubos será uniforme, lisa y regular.
6.2.2 Los planos extremos deben ser perpendiculares al eje de los tubos, se permite hasta un máximo de diferencia de 15 mm de tolerancia entre las dos generatrices opuestas del tubo.

6.2.3 Los tubos no deben presentar grietas que atraviesen sus paredes, cualquiera que sea su longitud (NOTA 2)

NOTA 2: A veces se presenta una grieta en los extremos, pero ésta no debe exceder la profundidad de la junta.

6.2.3.1 Se pueden presentar grietas que tengan 0,1 mm de ancho y con una profundidad no mayor de 35% del recubrimiento del tubo.

6.3 DIMENSIONES

6.3.1 Las dimensiones y tolerancias correspondientes a cada clase de tubo, vienen especificadas en Tabla 1.

6.4 RESISTENCIA AL APLASTAMIENTO (TRES FILOS)

La resistencia determinada según la Norma COVENIN 334 será la indicada en la Tabla 3.

6.5 ABSORCIÓN

La absorción determinada según la Norma COVENIN 335 no debe exceder de un 8% de su peso seco.

6.6 RESISTENCIA A LA PRESIÓN HIDROSTATICA.

Los tubos ensayados según la Norma COVENIN 336 no deben presentar filtraciones (NOTA 3)

NOTA 3: Las exudaciones y manchas que aparecen en la superficie no se consideran como filtraciones.

6.7 JUNTAS

La junta de goma debe cumplir con la Norma COVENIN 3:1-021

7 INSPECCION Y RECEPCION

Este capítulo está redactado con el criterio de ofrecer una guía al consumidor en la comercialización de lotes aislados. A menos que existe acuerdo previo entre productor y comprador, la inspección y recepción se realizará de acuerdo a lo indicado a continuación:

7.1 LOTE

Es la cantidad total de tubos fabricados, bajo las mismas características...
cas, materia prima y maquinaria en un mismo día, de un mismo diámetro y clase.

7.2 MUESTRA

Es un grupo de unidades extraídas de un lote, que permite obtener la información necesaria, para apreciar las características de ese lote y así poder tomar una decisión sobre el mismo.

7.3 INSPECCION DE CADA PIEZA DEL LOTE

7.3.1 Los requisitos físicos de los tubos, referentes a dimensiones, apariencia y acabado especificados en los ptos. 6.2 y 6.3 respectivamente, se comprueban para cada tubo. Los tubos que no cumplan con estas condiciones son rechazados.

7.4 INSPECCION POR MUESTREO

7.4.1 Los requisitos mecánicos especificados en los ptos. 6.4, 6.5 y 6.6 se verificarán por muestreo de acuerdo con lo indicado en la Tabla siguiente:

<table>
<thead>
<tr>
<th>DIÁMETRO mm</th>
<th>TAMAÑO DEL LOTE</th>
<th>ENSAYO TRES FILOS/ABSORCIÓN</th>
<th>ENSAYO HIDROS TÁTICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>450 a 900</td>
<td>0 - 50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>51 - 100</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>101 - 200</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>201 - 300</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>301 - 500</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>501 en adelante</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1050 a 2700</td>
<td>0 - 50</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>51 - 100</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLA 4. Muestreo
NOTA: Los tubos de 600 mm a 900 mm de diámetro, se ensayan por la prueba de hidrostática, solo cuando se considere necesario.
* Las muestras para el ensayo de absorción se deben tomar de acuerdo a lo especificado en la Norma COVENIN 335.

8 MARCACION Y ROTULACION

8.1 Cada tubo llevará marcado los siguientes datos:

8.1.1 Clase del tubo
8.1.2 Diámetro nominal
8.1.3 Razón social del fabricante
8.1.4 Fecha de fabricación
8.1.5 País de origen.

BIBLIOGRAFÍA

ASTM C-T6 Reinforced Concrete Culvert. Storm Drain and Sewer Pipe.
<table>
<thead>
<tr>
<th>Diámetro Nominal (mm)</th>
<th>Espesor de Pared (mm)</th>
<th>Tolerancia en el Espesor del Tubo (mm)</th>
<th>Tolerancia en la Longitud Nominal Declara por el Fabricante (mm)</th>
<th>Tolerancia en el Diámetro Nominal (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clase 4</td>
<td>Clase 5</td>
<td>Clase 6</td>
<td>Clase 7</td>
</tr>
<tr>
<td>450</td>
<td>64</td>
<td>-</td>
<td>-</td>
<td>64</td>
</tr>
<tr>
<td>500</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>600</td>
<td>76</td>
<td>76</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>700</td>
<td>76</td>
<td>76</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>750</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>800</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>900</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>1050</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>1200</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>1350</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>156</td>
</tr>
<tr>
<td>1500</td>
<td>152</td>
<td>152</td>
<td>152</td>
<td>171</td>
</tr>
<tr>
<td>1650</td>
<td>165</td>
<td>165</td>
<td>165</td>
<td>184</td>
</tr>
<tr>
<td>1800</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>197</td>
</tr>
<tr>
<td>1950</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>-</td>
</tr>
<tr>
<td>2100</td>
<td>203</td>
<td>203</td>
<td>203</td>
<td>-</td>
</tr>
<tr>
<td>2250</td>
<td>203</td>
<td>203</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2400</td>
<td>216</td>
<td>216</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2550</td>
<td>216</td>
<td>216</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2700</td>
<td>229</td>
<td>229</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

NOTA:
1. El signo (−) indica que no hay limitación en más.
2. El signo (+) indica que se establece una limitación tanto en más como en menos.

La longitud nominal mínima del tubo será 100 m.
<table>
<thead>
<tr>
<th>TABLA 2. Armadura mínima (cm²/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASE 7</td>
</tr>
<tr>
<td>Circular</td>
</tr>
<tr>
<td>Interior Exterior</td>
</tr>
<tr>
<td>1.14</td>
</tr>
<tr>
<td>1.24</td>
</tr>
<tr>
<td>1.35</td>
</tr>
<tr>
<td>Elíptica</td>
</tr>
<tr>
<td>1.56</td>
</tr>
<tr>
<td>1.62</td>
</tr>
<tr>
<td>1.68</td>
</tr>
<tr>
<td>CLASE 6</td>
</tr>
<tr>
<td>Circular</td>
</tr>
<tr>
<td>Interior Exterior</td>
</tr>
<tr>
<td>2.04</td>
</tr>
<tr>
<td>2.14</td>
</tr>
<tr>
<td>2.24</td>
</tr>
<tr>
<td>Elíptica</td>
</tr>
<tr>
<td>2.56</td>
</tr>
<tr>
<td>2.60</td>
</tr>
<tr>
<td>2.64</td>
</tr>
<tr>
<td>CLASE 5</td>
</tr>
<tr>
<td>Circular</td>
</tr>
<tr>
<td>Interior Exterior</td>
</tr>
<tr>
<td>3.04</td>
</tr>
<tr>
<td>3.14</td>
</tr>
<tr>
<td>3.24</td>
</tr>
<tr>
<td>Elíptica</td>
</tr>
<tr>
<td>3.56</td>
</tr>
<tr>
<td>3.60</td>
</tr>
<tr>
<td>3.64</td>
</tr>
<tr>
<td>CLASE 4</td>
</tr>
<tr>
<td>Circular</td>
</tr>
<tr>
<td>Interior Exterior</td>
</tr>
<tr>
<td>4.04</td>
</tr>
<tr>
<td>4.14</td>
</tr>
<tr>
<td>4.24</td>
</tr>
<tr>
<td>Elíptica</td>
</tr>
<tr>
<td>4.56</td>
</tr>
<tr>
<td>4.60</td>
</tr>
<tr>
<td>4.64</td>
</tr>
<tr>
<td>Diametro Nominal</td>
</tr>
<tr>
<td>450</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>550</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>650</td>
</tr>
<tr>
<td>700</td>
</tr>
<tr>
<td>750</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>850</td>
</tr>
<tr>
<td>900</td>
</tr>
<tr>
<td>950</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1050</td>
</tr>
<tr>
<td>1100</td>
</tr>
<tr>
<td>1150</td>
</tr>
<tr>
<td>1200</td>
</tr>
<tr>
<td>1250</td>
</tr>
<tr>
<td>1300</td>
</tr>
<tr>
<td>1350</td>
</tr>
<tr>
<td>1400</td>
</tr>
<tr>
<td>1450</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>1550</td>
</tr>
<tr>
<td>1600</td>
</tr>
<tr>
<td>1650</td>
</tr>
<tr>
<td>1700</td>
</tr>
<tr>
<td>1750</td>
</tr>
<tr>
<td>1800</td>
</tr>
<tr>
<td>1850</td>
</tr>
<tr>
<td>1900</td>
</tr>
<tr>
<td>1950</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2050</td>
</tr>
<tr>
<td>2100</td>
</tr>
<tr>
<td>2150</td>
</tr>
<tr>
<td>2200</td>
</tr>
<tr>
<td>2250</td>
</tr>
<tr>
<td>2300</td>
</tr>
<tr>
<td>2350</td>
</tr>
<tr>
<td>2400</td>
</tr>
<tr>
<td>2450</td>
</tr>
<tr>
<td>2500</td>
</tr>
<tr>
<td>2550</td>
</tr>
<tr>
<td>2600</td>
</tr>
</tbody>
</table>
TABLA 3. Resistencias.

NOTA 1: Al diseñar, se utilizan los valores indicados en esta tabla, aplicando un coeficiente de seguridad de 1,5 para rotura y 1,0 para la grieta.

<table>
<thead>
<tr>
<th>Diámetro (mm)</th>
<th>Carga de grieta de 0,25mm (0,01") y de rotura en aplastamiento (Tres Filos) kg/m</th>
<th>Clase 4</th>
<th>Clase 5</th>
<th>Clase 6</th>
<th>Clase 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carga de grieta</td>
<td>Carga de rotura</td>
<td>Carga de grieta</td>
<td>Carga de rotura</td>
<td>Carga de grieta</td>
</tr>
<tr>
<td>450</td>
<td>4900</td>
<td>7350</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>5300</td>
<td>7950</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>600</td>
<td>5650</td>
<td>8500</td>
<td>5800</td>
<td>8700</td>
<td>-</td>
</tr>
<tr>
<td>700</td>
<td>5650</td>
<td>8500</td>
<td>6250</td>
<td>9400</td>
<td>-</td>
</tr>
<tr>
<td>750</td>
<td>5650</td>
<td>8500</td>
<td>6450</td>
<td>9700</td>
<td>-</td>
</tr>
<tr>
<td>800</td>
<td>5650</td>
<td>8500</td>
<td>6700</td>
<td>10050</td>
<td>-</td>
</tr>
<tr>
<td>900</td>
<td>6000</td>
<td>9000</td>
<td>6900</td>
<td>10350</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>6000</td>
<td>9000</td>
<td>7350</td>
<td>11000</td>
<td>-</td>
</tr>
<tr>
<td>1050</td>
<td>6000</td>
<td>9000</td>
<td>8100</td>
<td>12150</td>
<td>-</td>
</tr>
<tr>
<td>1100</td>
<td>6000</td>
<td>9000</td>
<td>9100</td>
<td>13650</td>
<td>-</td>
</tr>
<tr>
<td>1200</td>
<td>6750</td>
<td>10100</td>
<td>10150</td>
<td>15200</td>
<td>-</td>
</tr>
<tr>
<td>1350</td>
<td>7500</td>
<td>11250</td>
<td>11150</td>
<td>16700</td>
<td>-</td>
</tr>
<tr>
<td>1500</td>
<td>8250</td>
<td>12400</td>
<td>12150</td>
<td>18000</td>
<td>-</td>
</tr>
<tr>
<td>1650</td>
<td>9000</td>
<td>13000</td>
<td>13150</td>
<td>19700</td>
<td>-</td>
</tr>
<tr>
<td>1800</td>
<td>9000</td>
<td>13000</td>
<td>14200</td>
<td>21300</td>
<td>-</td>
</tr>
<tr>
<td>1950</td>
<td>9750</td>
<td>14600</td>
<td>15200</td>
<td>22800</td>
<td>-</td>
</tr>
<tr>
<td>2100</td>
<td>10500</td>
<td>15750</td>
<td>16200</td>
<td>24300</td>
<td>-</td>
</tr>
<tr>
<td>2250</td>
<td>11250</td>
<td>16900</td>
<td>17200</td>
<td>25800</td>
<td>-</td>
</tr>
<tr>
<td>2400</td>
<td>12000</td>
<td>18000</td>
<td>18200</td>
<td>27300</td>
<td>-</td>
</tr>
<tr>
<td>2550</td>
<td>12750</td>
<td>19100</td>
<td>19200</td>
<td>28900</td>
<td>-</td>
</tr>
<tr>
<td>2700</td>
<td>13500</td>
<td>20250</td>
<td>20200</td>
<td>30500</td>
<td>-</td>
</tr>
<tr>
<td>R-t28=350kg/cm^2</td>
<td>R-t28=280 kg/cm^2</td>
<td>R-t28=350 kg/cm^2</td>
<td>R-t28=280 kg/cm^2</td>
<td>R-t28=420 kg/cm^2</td>
<td>R-t28=350 kg/cm^2</td>
</tr>
</tbody>
</table>

NOTA 2: Las resistencias del concreto se refieren a los 28 días, medidas en cilindros.

NOTA 3: Todos los tubos ensayados se llevarán a la carga de rotura.
FIG. 1
TUBO DE CONCRETO ARMADO
COMISION VENEZOLANA DE NORMAS INDUSTRIALES
MINISTERIO DE FOMENTO
Av. Andrés Bello Edif. Torre Fondo Común Pisos 11 y 12
Telf. 575. 41. 11 Fax: 574. 13. 12
CARACAS

publicación de:

CDU: 666.97 : 628.14

RESERVADOS TODOS LOS DERECHOS.
Prohibida la reproducción total o parcial, por cualquier medio.