Vehículos automotores. Material de fricción para los discos de embrague para transmisión

CDU 656. 13 : 531. 43 : 621. 839
ISBN 980 - 06 - 0917 - 2
ENVIÓ A DISCUSIÓN PÚBLICA

FECHA: 91/05/31

DURACIÓN 45 DÍAS

FECHA DE APROBACIÓN POR EL COMITE: 92/05/14

FECHA DE APROBACIÓN POR LA COVENIN: 92/06/10

SECRETARIO:

ING. JUSE A. DIBUEI

SUBCOMITÉ TÉCNICO CTÁVEZ:

CONFEDERACIÓN CARROCERÍA Y SISTEMA DE FRENO

ING. ANGELO COMENARES

ING. EDGAR CABRILLO

ING. JUSE A. DIBUEI

PARTICIPANTES

RAYLIA LIMONES

NADIE RIBAS DE LUCIA

HENRY BENCHON

TESTÍFICAE MUMOS

WILSON ZAMBRANO

JUAN MARÍA STEFANI

WILLIAM PÁZ CABRILLO

AUTOMOTORES (CANDIRAO)

CAMARA AUTOMOTRIZ DE VENEZUELA (CANDIRAO)

DISTRIBUIDORES DE REPUESTOS AUTOMOTORES (CANDIRAO)

GERERAL MOTORES VENEZOLANOS, C.A.

EMBARGADO VENEZOLANO, C.A.

BOBO & BECK DE VENEZUELA

M.A.R.N.

MINISTERO DE FOMENTO

CAMARA NACIONAL DE IMPORTADORES Y DISTRIBUIDORES DE REPUESTOS AUTOMOTORES (CANDIRAO)

R.M.N.R.

MAMUSA

ENILODAO
COMITÉ CT5: AUTOMOTRIZ

PRESIDENTE: ING. ALBERTO J. MAIZY
VICEPRESIDENTE: ING. WILLIAM PAZ CASTILLO
SECRETARIO: ING. AQUILES BARRIOS

SUBCOMITÉ TECNICO CT5/SC3: SUSPENSION, CARROCERIA Y SISTEMA DE FRENOS
COORDINADOR: ING. ANGEL COLMENARES
ING. EDGAR CASTILLO
ING. JOSE A. DIEGUEZ

ENTIDAD
MAMUSA
BORS & BECK DE VENEZUELA
EMBRAGUES VENEZOLANOS, C.A.
GENERAL MOTORS VENEZOLANA, C.A.
M.A.R.N.R
MINISTERIO DE FOMENTO
CAMARA NACIONAL DE IMPORTADORES Y DISTRIBUIDORES DE REPUESTOS AUTOMOTRICES (C nondra)
CAMARA AUTOMOTRIZ DE VENEZUELA (CAVENEZ)

PARTICIPANTES

REPRESENTANTES
LADISLAO RIESGO
YALILA LIMONES
NICOLAS DE LUCIA
SANTIAGO GONZALEZ
HENRY BENCΌMO
TEOTISTE MUNOZ
SIBRAHIM GERDLER
JOSE MARIA STEFANI
WILSON ZAMBRANO
SANTIAGO ARAGONES
LUIS VELAZCO
3.4 DIÁMETRO INTERNO DEL DISCO DE FRICCIÓN.

Es la distancia medida en línea recta entre los puntos opuestos más alejados del borde interior del disco de fricción.

3.5 ESPESOR.

Es la distancia medida entre dos puntos de caras opuestas, en sentido perpendicular a dichas caras.

3.6 COEFICIENTE DE FRICCIÓN.

Es la relación que existe entre la fuerza de fricción y la fuerza aplicada sobre la muestra de prueba.

4 MATERIALES, DISEÑO Y FABRICACIÓN.

Las caras de los discos de fricción para transmisión de vehículos automotores deberán estar libres de defectos tales como: grietas, golpes, distorsiones, desniveles, trazos de aceite, rebordes o rebabas, u otros defectos que puedan influir negativamente en el buen funcionamiento del disco de embrague.

5 CLASIFICACIÓN.

Los discos de fricción para ser usados en la transmisión de vehículos automotores se pueden clasificar de acuerdo al tipo de material con que son elaborados en:

5.1 TIPO A.

Son aquellos elaborados a partir de hilo mediante un proceso particular (bobinado, tejido, entrelazado, etc.), reforzados o no.

5.2 TIPO B.

Son aquellos moldeados en fibra corta.
NORMA VENEZOLANA. VEHÍCULOS AUTOMOTORES.

MATERIAL DE FRICTION
PARA LOS DISCOS DE EMBRAGUE
PARA TRANSMISIÓN

1 NORMAS COVENIN A CONSULTAR.

COVENIN 1305-7B: Plásticos. Determinación del contenido de cenizas.

COVENIN 646-82: Ensayo de Dureza Rockwell.

2 OBJETO Y CAMPO DE APLICACIÓN.

Esta Norma Venezolana establece los requisitos mínimos que debe satisfacer el material de fricción utilizado en los discos de embrague para transmisión de vehículos automotores, diseñados para operar al seco y elaborados con Amianto como componente básico.

3 DEFINICIONES.

3.1 DISCO DE EMBRAGUE.

Es el elemento del sistema de embrague de forma circular que sirve de soporte al material usado en la fabricación del disco de fricción utilizado en la transmisión de vehículos automotores.

3.2 DISCO DE FRICTION.

Es la pieza circular cuyas características o propiedades de fricción aseguran la transmisión total del movimiento entre el grupo motor y el grupo de la transmisión.

3.3 DIAMETRO EXTERNO DEL DISCO DE FRICTION.

Es la distancia medida en línea recta entre los puntos opuestos más alejados del borde exterior del disco de fricción.
6.1.4 Paralelismo.

La diferencia en espesor entre dos puntos diferentes de las caras del disco cuando se ensaya según el procedimiento descrito en el punto 8.1 de la presente norma deberá especificarse en los planos de diseño correspondientes; pero nunca deberá ser mayor a la establecida en la tabla 1 de la presente norma.

6.1.5 Profundidad del remachado de las pastas.

El espesor entre el borde inferior de la cabeza del remache y la cara del disco cuando se ensaya según el procedimiento descrito en el punto 8.1 de la presente norma deberá estar especificado en los planos de diseño correspondientes; pero nunca deberá ser mayor a lo establecido en la tabla 2 de la presente norma, independientemente del ángulo de la cabeza del remache. (Ver figura 1)

<table>
<thead>
<tr>
<th>ESPESOR DE LA CARA</th>
<th>Tmínima</th>
<th>Tmáxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>(mm)</td>
<td>(mm)</td>
</tr>
<tr>
<td>3 ≤ D ≤ 3,20</td>
<td>1,20</td>
<td>1,30</td>
</tr>
<tr>
<td>3,30 ≤ D ≤ 3,50</td>
<td>1,30</td>
<td>1,40</td>
</tr>
<tr>
<td>3,60 ≤ D ≤ 4,00</td>
<td>1,50</td>
<td>1,60</td>
</tr>
<tr>
<td>D > 4,00</td>
<td>1,60</td>
<td>D/2</td>
</tr>
</tbody>
</table>

6.2 COEFICIENTE DE FRICCIÓN.

6.2.1 El valor promedio del coeficiente de fricción, medido según el punto 8.2 de la presente norma, deberá concordar con las especificaciones establecidas por el fabricante, previo acuerdo Cliente-Proveedor, pero en ningún caso deberá ser menor de 0,25 para el normal y 0,15 en caliente, para ambas superficies y para los dos tipos contemplados en la clasificación.

6.3 DUREZA.

6.3.1 La dureza del material será medida según el punto 8.3 de la presente norma, y deberá concordar con los valores establecidos por el fabricante, previo acuerdo Cliente-Proveedor, sin presentar una variación de ± 10% del valor especificado.
6 REQUIBITOS.

6.1 DIMENSIONALES.

6.1.1 Las dimensiones de las caras de los discos de fricción para transmisión de vehículos automotores deberán estar de acuerdo a lo establecido en los planos de diseño y en las especificaciones del fabricante, previo acuerdo cliente-proveedor.

6.1.2 Las variables dimensionales a verificar serán como mínimo diámetro externo e interno, espesor, paralelismo y profundidad del remachado de las pastas. Las tolerancias dimensionales se deberán especificar en los planos de diseño correspondientes, pero de cualquier manera nunca deberán ser mayores a las establecidas en la tabla 1 de la presente norma.

TABLA 1. TOLERANCIAS EN EL DIÁMETRO EXTERNO Y PARALELISMO.

<table>
<thead>
<tr>
<th>DIÁMETRO EXTERNO</th>
<th>TOLERANCIA (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 ≤ De ≤ 215</td>
<td>± 0,8</td>
</tr>
<tr>
<td>De > 215</td>
<td>± 1,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIÁMETRO EXTERNO</th>
<th>PARALELISMO (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 ≤ De ≤ 215</td>
<td>± 0,08</td>
</tr>
<tr>
<td>De > 215</td>
<td>± 0,10</td>
</tr>
</tbody>
</table>

6.1.3 Espesor.

El espesor de las caras de los discos de fricción cuando se ensaya según el procedimiento descrito en el punto 8.1 de la presente norma deberá cumplir con las especificaciones del plano de diseño respectivo.

En caso de no existir una especificación explícita en los planos de diseño del cliente, todas las medidas deberán estar dentro de la siguiente tolerancia: ± 0,10 mm.

6.1.4 Diámetro Interno.

El diámetro interno de las caras de los discos de fricción cuando se ensaya según el procedimiento descrito en el punto 8.1 de la presente norma deberá cumplir con las especificaciones del plano de diseño respectivo.

En caso de no existir una especificación explícita en los planos de diseño del cliente, esta variable deberá tener una tolerancia de ± 0,80 mm sobre el valor nominal.
7 INSPECCION Y RECEPCION.

Este capítulo está redactado con el criterio de ofrecer una guía al consumidor para determinar la calidad del lote aislado a comercializarse.

A menos que exista un acuerdo previo entre cliente y proveedor, la inspección y recepción del producto deberá cumplir con lo establecido a continuación.

7.1 LOTE

7.1.1 Es una cantidad determinada de discos de fricción de características similares, elaborados bajo las mismas condiciones de fabricación y que se somete a inspección como un conjunto unitario.

7.2 TAMAÑO DE LA MUESTRA.

7.2.1 El número de discos de fricción tomados al azar de cada lote será de acuerdo a la tabla 4 de la presente norma.

<table>
<thead>
<tr>
<th>TABLA 4. Criterios de aceptación y Rechazo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAMAÑO DEL LOTE "N"</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>281 ≤ N ≤ 500</td>
</tr>
<tr>
<td>501 ≤ N ≤ 1200</td>
</tr>
<tr>
<td>1201 ≤ N ≤ 3200</td>
</tr>
<tr>
<td>3201 ≤ N ≤ 10000</td>
</tr>
</tbody>
</table>

7.2.2 Todos los discos de fricción seleccionados según el punto 7.2.1 de la presente norma, serán objeto de verificación dimensional y de los requisitos indicados en los puntos 6.2 al 6.7 de la presente norma siguiendo lo establecido en la tabla 5, a menos de que se especifique lo contrario previo acuerdo Cliente-Proveedor.

<table>
<thead>
<tr>
<th>TABLA 5. SECUENCIA Y No. DE ENSAYOS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRUEBA DE CENTRIFUGADO</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>
6.4 GRAVEDAD ESPECIFICA.

6.4.1 La gravedad específica será medida según el punto 8.4 de la presente norma, y deberá concordar con los valores establecidos por el fabricante, previo acuerdo Cliente-Proveedor, sin presentar una variación de ± 5% del valor especificado.

6.5 RATA DE DESGASTE.

6.5.1 El desgaste experimentado por el disco de fricción según el tipo de material utilizado en la fabricación será medido según el punto 8.2 de la presente norma, y deberá concordar con los valores establecidos por el fabricante, previo acuerdo Cliente-Proveedor.

6.6 CENTRIFUGADO.

6.6.1 El número de revoluciones a que deben ser sometidos los discos según el diámetro externo, se especifica en la tabla 3 de la presente norma, y los mismos cuando se sometan al ensayo descrito en el punto 8.5 de la presente norma, no deberán presentar fracturas o fisuras en las caras.

<table>
<thead>
<tr>
<th>DIÁMETRO "d" (mm)</th>
<th>rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < d < 180</td>
<td>12.000</td>
</tr>
<tr>
<td>181 ≤ d < 225</td>
<td>10.000</td>
</tr>
<tr>
<td>226 ≤ d < 250</td>
<td>9.000</td>
</tr>
<tr>
<td>251 ≤ d < 280</td>
<td>8.000</td>
</tr>
<tr>
<td>281 ≤ d < 310</td>
<td>7.500</td>
</tr>
<tr>
<td>311 ≤ d < 350</td>
<td>7.000</td>
</tr>
<tr>
<td>351 ≤ d < 380</td>
<td>6.500</td>
</tr>
<tr>
<td>381 ≤ d < 420</td>
<td>6.000</td>
</tr>
</tbody>
</table>

6.7 CONTENIDO DE CENIZA.

6.7.1 El contenido de ceniza será medido según lo indicado en el punto 8.6 de la presente norma, y deberá concordar con los valores establecidos por el fabricante, previo acuerdo Cliente-Proveedor, sin presentar una variación de ± 2% del valor especificado.
8.1.2.3 Se procede a medir en por lo menos 6 puntos distintos del disco de fricción el espesor del mismo usando el vernier o el tornillo micrométrico.

8.1.2.4 Se procede a registrar en ocho puntos como mínimo la profundidad del remachado de las pastas usando el vernier como instrumento para medir desniveles.

8.1.2.5 Con los valores obtenidos en los puntos 8.1.2.2 al 8.1.2.4 se determinan las medidas promedio de todas y cada una de las dimensiones establecidas, para luego proceder a checar los requisitos establecidos en los puntos 6.1.2 y 6.1.3 de la presente norma.

NOTA 1: La secuencia de medición aquí indicada es la más recomendada pero no la única existente para determinar las variables dimensionales mínimas que definen al disco de embague.

8.1.2.7 Cualquier otra dimensión distinta a las aquí especificadas debe ser fijada, así como su correspondiente método de verificación, previo acuerdo Cliente-Proveedor.

8.1.3 Informe.

El Informe debe contener como mínimo la siguiente información:

8.1.3.1 Nombre del ensayo.

8.1.3.2 Norma Venezolana COVENIN utilizada en el ensayo.

8.1.3.3 Número de determinaciones realizadas por variable.

8.1.3.4 Número de determinaciones fuera de especificaciones por variable.

8.1.3.5 Resultados finales del ensayo y comparación de los mismos con los exigidos por la norma.

8.1.3.6 Nombre del operario y fecha de realización del ensayo.

8.1.3.7 Condiciones ambientales durante el ensayo.

8.1.3.8 Observaciones.
7.3 ACEPTACIÓN Y RECHAZO.

7.3.1 El lote será aceptado si la sumatoria de productos defectuosos es menor o igual al criterio de aceptación expuesto en la tabla 4, de lo contrario será Rechazado.

7.3.2 Si el resultado de algún ensayo resultase insatisfactorio debido a fallas técnicas en la realización de alguno de ellos, o a defectos en la probeta, deberá descartarse el resultado de la prueba, repitiéndose nuevamente el ensayo.

7.3.3 Reclamación.

Todo material que tras su aceptación y durante su utilización por parte del cliente, evidencie fallas, o que aparentemente no estuviera de acuerdo con lo establecido en esta norma, deberá ser apartado adecuadamente, manteniéndose la identificación del lote de fabricación almacenado, de manera que no se alteren sus características.

El plazo máximo para la presentación de la reclamación deberá ser establecido previo acuerdo Cliente-Proveedor.

Si se comprueba que el material no cumple con las exigencias de esta norma tendrá el derecho a rechazarlo.

8 METODOS DE ENSAYO.

8.1 VERIFICACION DIMENSIONAL.

8.1.1 Instrumentos

8.1.1.1 Cinta métrica con apreciación de 1.0 mm.

8.1.1.2 Vernier con apreciación de 0,1 mm.

8.1.1.3 Tornillo micrométrico con apreciación de 0,025 mm.

8.1.2 Procedimiento.

8.1.2.1 Se coloca el disco de fricción sobre una superficie lisa y libre de obstáculos, a fin de permitir el fácil manejo de la pieza.

8.1.2.2 Dependiendo de los diámetros nominales externo e interno del disco de fricción, los mismos se verifican en tres puntos (como mínimo) bastante distanciados, usando la cinta métrica descrita en el punto 8.1.1.1, o el vernier del punto 8.1.1.2 de la presente norma.
8.2.3 Procedimiento.

8.2.3.1 Preparación de la superficie del tambor de la máquina.

8.2.3.1.1 Se desbasta la superficie del tambor sin desmontarlo de la máquina de ensayo, a fin de extraer todos los residuos adheridos sobre la superficie del mismo.

8.2.3.1.2 Se limpia la superficie con aire comprimido.

8.2.3.2 Asentamiento de la muestra.

8.2.3.2.1 Se acondiciona la muestra al tambor, presionándola sobre el mismo con una presión de 690 KPa (100 psi) mientras el tambor gira a una velocidad de 312 rpm y a una temperatura máxima de 95 ºC durante 20 minutos.

8.2.3.2.2 Se debe verificar que la superficie de contacto entre la muestra a ensayar y el tambor sea mayor a un 95%, en caso contrario se debe retirar dicha muestra y repetir los puntos 8.2.3.1 y 8.2.3.2 hasta lograrlo.

8.2.3.3 Se procede a desmontar el material a ensayar del tambor y se le mide el espesor en tres puntos distintos sobre su periferia, en su centro y en cada borde del mismo, a lo largo de un eje paralelo al eje del tambor, mediante el uso del tornillo micrométrico descrito en el punto 8.2.1.4 de la presente norma.

8.2.3.4 Se pesa el material a ensayar en la balanza descrita en el punto 8.2.1.2.

8.2.3.5 Se asienta nuevamente el material a ensayar sobre el tambor ejerciendo una presión de 3450 KPa (500 psi) mientras este gira a 208 rpm durante 5 minutos.

8.2.3.6 Se detiene el tambor y se presiona el material a ensayar sobre el mismo con una presión de 1035 KPa (150 psi), siendo la temperatura del tambor 90 ºC.

8.2.3.7 Se registra el valor del espesor de la muestra.

8.2.3.8 Se hace girar el tambor cuya temperatura debe ser de 95 ± 1 ºC, a una velocidad de 417 rpm, aplicándose sobre la muestra una presión de 1035 KPa (150 psi) durante 10 segundos.

8.2.3.9 Se libera la carga y se deja rotar el tambor libremente durante 20 segundos.
8.2 COEFICIENTE DE FRICCIÓN Y RATA DE DESGASTE.

8.2.1 **Equipo e Instrumentos.**

8.2.1.1 Máquina de ensayo para determinar el coeficiente de fricción similar a la mostrada en la figura 2. Esta máquina comúnmente se encuentra conformada como sigue:

8.2.1.1.1 Sensores de temperatura con una apreciación de ±2%.

8.2.1.1.2 Dispositivo regulador de temperatura a fin de asegurar un comportamiento según la curva en carrera libre de 14 oC.

8.2.1.1.3 Dispositivo para medir la fuerza de fricción con una tolerancia de ± 2%.

8.2.1.1.4 Tacómetro con apreciación de ± 2%.

8.2.1.1.5 Un tambor cuyo diámetro debe estar comprendido entre 277,4 y 279,9 mm.

8.2.1.2 Balanza con apreciación de ± 0,001 gr.

8.2.1.3 Papel abrasivo de grano grueso, medio y fino.

8.2.1.4 Tornillo micrométrico con apreciación de 0,025 mm.

8.2.2 **Preparación de las muestras.**

8.2.2.1 La muestra a ensayar consiste de cinco pedazos de disco de fricción, cortados y preparados como sigue:

8.2.2.1.1 Se toma un segmento cuadrado de 25,4 mm de lado del centro del disco de fricción, en una zona equidistante de los extremos.

8.2.2.1.2 Se conforma la superficie de trabajo de la muestra, al radio del tambor de la máquina de ensayo sin quitar material en más de 0,5 mm ni menos de 0,25 mm de su espesor, la superficie interior deberá ser plana.

8.2.2.1.3 El espesor de la muestra, incluyendo la lámina de montaje, será de aproximadamente 6,10 mm. En caso de muestras con espesores mayores, éste se disminuye quitando material de su superficie inferior. En caso de muestras con espesores inferiores, se permitirá el uso de un suplemento.
8.2.3.21 Se repite el procedimiento descrito en los puntos 8.2.3.8 al 8.2.3.10 de la presente norma.

8.2.3.22 Se repite lo indicado en los puntos 8.2.3.6 y 8.2.3.7 de la presente norma.

8.2.3.23 Se desmonta la muestra del tambor y se toman mediciones de espesor sobre la parte más alta de la misma.

8.2.3.24 Se pesa la muestra una vez realizadas las verificaciones anteriores.

8.2.3.25 Se recomienda utilizar la "Hoja de gráficos" que se anexa a la presente norma para mantener la uniformidad de la representación gráfica de los datos del ensayo.

8.2.3.26 El promedio de los valores de los puntos correspondientes a las temperaturas de 95, 120, 150 y 205 °C registrados en el punto 8.2.3.15 de la presente norma se considera como el coeficiente de fricción normal.

8.2.3.27 La diferencia entre los valores del espesor final (punto 8.2.3.23) e inicial (punto 8.2.3.3) se considera como el valor del desgaste.

8.2.3.28 El promedio aritmético de los valores registrados en los puntos 8.2.3.15 y 8.2.3.20 de la presente norma se denomina coeficiente de fricción en caliente.

8.2.3.29 Se admitirá una variación máxima del 20% con respecto al valor promedio para los coeficientes de fricción obtenidos en los puntos 8.2.3.15 y 8.2.3.20.

8.2.4 Informe.

8.2.4.1 Además de la información indicada en el punto 8.1.3 de la presente norma se deberá incluir la siguiente información:

8.2.4.1.1 Espesor promedio.

8.2.4.1.2 Peso promedio.

8.2.4.1.3 Coeficiente de fricción normal.

8.2.4.1.4 Coeficiente de fricción en caliente.

8.2.4.1.5 Medida de desgaste.

(Ver Figuras 3, 4 y 5).
8.2.3.10 Se repiten los puntos 8.2.3.8 y 8.2.3.9 veinte (20) veces como mínimo, al final de las cuales se debe registrar el valor de la fuerza de fricción y el coeficiente correspondiente.

8.2.3.11 Se presiona la muestra en forma continua, aplicándole una presión de 1035 KPa (150 psi) mientras el tambor gira a 417 rpm.

8.2.3.12 Con el dispositivo regulador de la temperatura se fijan 95 ± 1 oC al tambor y se mantienen las condiciones expuestas en el punto anterior hasta que cualquiera de las 2 condiciones siguientes suceda primero:

8.2.3.12.1 Diez (10) minutos de ensayo.

8.2.3.12.2 Hasta alcanzar una temperatura de 290 oC.

8.2.3.13 Llegados a una de esas condiciones se deben registrar las siguientes variables: tiempo transcurrido, fuerza de fricción y coeficiente de fricción.

8.2.3.14 Se conecta entonces el sistema de enfriamiento y al alcanzar las siguientes temperaturas: 260, 205, 150 y 95 oC se repite lo indicado en el punto 8.2.3.11 de la presente norma durante 10 segundos para cada caso.

8.2.3.15 Se registran los valores de fuerza de fricción y coeficiente de fricción de cada caso.

8.2.3.16 Se registra el valor del espesor del material en ensayo.

8.2.3.17 Se presiona la muestra sobre el tambor que se encuentra girando a 417 rpm y a una temperatura de 205 ± 11 oC, a razón de 1035 KPa (150 psi) durante 20 segundos y luego sin carga durante 10 segundos.

8.2.3.18 Se repite la secuencia indicada en el punto anterior unas cien (100) veces aproximadamente.

8.2.3.19 Se registra el valor del espesor con la misma precisión que la indicada en el punto 8.2.3.3 de la presente norma.

8.2.3.20 Se repiten los pasos indicados en los puntos 8.2.3.12 al 8.2.3.15 con las siguientes diferencias:

8.2.3.20.1 La temperatura tope es de 345 oC en vez de 290 oC.
8.2.3.20.2 Los descensos de temperatura se encuentran identificados por los siguientes valores: 315, 260, 205, 150 y 90 oC.
8.3.4.6 Se efectúa un promedio aritmético de por lo menos tres valores de dureza para cada material a ensayar.

TABLA 6. ENSAYO DE DUREZA

<table>
<thead>
<tr>
<th>ESCALA</th>
<th>DIÁMETRO DEL PENETRADOR (mm)</th>
<th>CARGA (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>12,70</td>
<td>60</td>
</tr>
<tr>
<td>L</td>
<td>6,35</td>
<td>60</td>
</tr>
<tr>
<td>M</td>
<td>6,35</td>
<td>100</td>
</tr>
<tr>
<td>P</td>
<td>6,35</td>
<td>150</td>
</tr>
<tr>
<td>K</td>
<td>3,175</td>
<td>150</td>
</tr>
<tr>
<td>S</td>
<td>12,70</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td>12,70</td>
<td>160</td>
</tr>
</tbody>
</table>

8.3.5 Informe.

8.3.5.1 En el informe se debe incluir lo indicado en el punto 8.1.3 de la presente norma.

8.4 GRAVEDAD ESPECÍFICA.

8.4.1 Equipos e Instrumentos.

8.4.1.1 Balanza con apreciación de 0.1 gr, que pueda cumplir con la siguiente especificación:

8.4.1.1.1 Bandeja para colocar el material a ensayar que pueda asegurada a la balanza ser sumergida en agua destilada a temperatura ambiente.

8.4.1.2 Recipiente con una capacidad lo suficientemente grande para contener el material a ensayar y la bandeja indicada en el punto anterior, sin que se toquen las paredes del mismo. (Ver Figura 7).

8.4.2 Preparación de las muestras.

La muestra a ensayar consiste de un pedazo de 30 a 50 gr del material de fricción de una misma formulación sin que haya sido perforado o sin que se le haya introducido alteración alguna a su forma original.

8.4.3 Procedimiento.

8.4.3.1 Se coloca el material a ensayar en el plato de pesada de la balanza y se determina su peso en el aire con una apreciación de 0.1 gr y se registra este valor como A.

8.4.3.2 Se ajusta la escala de la balanza en cero estando la bandeja vacía y sumergida en el recipiente con agua destilada.
8.3 DUREZA.

8.3.1 Equipos e Instrumentos.

8.3.1.1 Medidor de dureza Rockwell con las siguientes características: (Ver Figuras 6 y 7)

<table>
<thead>
<tr>
<th>Dispositivo para la aplicación de cargas de 10, 60, 100 y 150 Kgf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Kgf</td>
</tr>
<tr>
<td>10 mm</td>
</tr>
</tbody>
</table>

8.3.1.2 Penetrador esférico de diámetros 3,17; 6,35 y 12,7 mm.

8.3.1.3 Dispositivo para medir la profundidad de la huella con una apreciación de 0,002 mm.

8.3.2 Preparación de las muestras.

La muestra a ensayar consiste de un disco de fricción.

8.3.3 Condiciones del ensayo.

El ensayo debe realizarse bajo una temperatura ambiente comprendida entre 18 y 24 ºC.

8.3.4 Procedimiento.

8.3.4.1 Los principios básicos para la realización de este ensayo deben estar de acuerdo a lo establecido en la norma Venezolana COVENIN 646.

8.3.4.2 Se remueve una pequeña cantidad de material de la muestra a ensayar de forma de asegurar una buena superficie de apoyo.

8.3.4.3 Se apoya el penetrador sobre dicha superficie y se aplica una fuerza de precarga (F₀) de 10 Kgf.

8.3.4.4 Se aplica luego la carga de prueba indicada en la tabla 6, seleccionando la escala de manera que el valor de la dureza oscile entre 40 y 90.

8.3.4.5 Se usa una sola escala para cada máquina durante 5 segundos por lo menos, después de que se quite la carga F₁.
8.5.4 Informe.

8.5.4.1 En el informe se debe incluir lo indicado en el punto 8.1.3 de la presente norma.

8.6 CONTENIDO DE CENIZAS.

Este ensayo se realiza según lo especificado en la norma Venezolana COVENIN 1305, tomando en consideración que el material a ensayar consiste en una muestra del material de fricción.

9 MARCACION, ROTULACION Y EMBALAJE.

9.1 MARCACION Y ROTULACION.

Los discos de fricción para transmisión de vehículos automotores deberán llevar marcado en algún lugar visible la siguiente información:

9.1.1 Marca y/o Nombre registrado del fabricante.

9.1.2 La leyenda "Hecho en Venezuela" o lugar de origen.

9.1.3 Nombre e identificación del producto.

9.1.4 Fecha o código de fabricación.

9.1.5 Identificación del producto según su tipo, modelo y materia prima utilizada en su elaboración, según lo contemplado en la norma Venezolana COVENIN 2251.

9.1.6 Instrucciones de montaje u otras en especial en Español.

9.2 EMBALAJE.

Los discos de fricción para transmisión de vehículos automotores deberán embalarse en forma adecuada de manera que no sufran deterioros durante su almacenamiento, manipulación y transporte.
8.4.3.3 Se coloca el material a ensayar en la bandeja y se registra el peso como \(B \), después de transcurridos 30 segundos como mínimo.

8.4.4 Expresión de los Resultados.

8.4.4.1 La gravedad específica se calcula usando la siguiente relación matemática:

\[
G_{específica} = \frac{A}{(A - B)}
\]

8.4.5 Informe

8.4.5.1 En el informe se debe incluir lo indicado en el punto 8.1.3 de la presente Norma.

8.5 CENTRIFUGADO.

8.5.1 Equipos e Instrumentos.

8.5.1.1 Un eje solidario a un plato o disco donde se pueda fijar el disco de fricción.

8.5.1.2 Un dispositivo capaz de suministrar al eje del punto 8.5.1.1 un movimiento giratorio que oscile entre las 3,000 y 20,000 rpm. Se recomienda el uso de una turbina a gas, de vapor o un mecanismo moto-reductor de velocidad variable.

8.5.2 Preparación de las muestras.

La muestra a ensayar consiste de un pedazo de disco de fricción con cualquiera de las dimensiones indicadas en la tabla 3 de la presente norma.

8.5.3 Procedimiento.

8.5.3.1 Se coloca el plato en el eje.

8.5.3.2 Se toma la muestra a ensayar y se remacha sobre el plato.

8.5.3.3 Se enciende el dispositivo indicado en el punto 8.5.1.2, aumentando progresivamente las rpm hasta alcanzar el valor especificado en la tabla 3 de la presente norma.

8.5.3.4 Una vez alcanzadas las rpm requeridas se mantienen durante 30 segundos.

8.5.3.5 Se desacelera el movimiento de rotación hasta que se detenga y luego se procede a chequear lo establecido en el punto 6.6.1 de la presente norma.
Figura 1. Profundidad del remachado de las pastas.
BIBLIOGRAFIA.

IS 3649-66 Indian Standard Institution.

JIS D 4311-60 Japanese Industrial Standard.

DGN D 140-78 Dirección General de Normas (México).

CETIA 7F Comisión de Estudios Técnicos de la Industria Automotriz (Argentina).
Fig. 3. Curva de calentamiento.
Fig. 2. Diagrama esquemático de la máquina de prueba para materiales de fricción.
Fig. 4. Curva de enfriamiento.
Fig. 4. Curva de enfriamiento.
$\Phi A = 19.05 \pm 25.39$

$X =$ Ancho de la ranura en la balata más 6.4 mínimo

Fig. 8.

Fig. 9.
Fig. 7. Equipo de ensayo